Yang Borui, Wang Yuankun, Zheng Ruixin, Yang Wei, Li Yuanjian, Li Ting, Li Kun, Hu Anjun, Long Jianping, Ding Shujiang
College of Materials and Chemistry & Chemical Engineering (College of Lithium Resources and Lithium Battery Industry), Chengdu University of Technology, Chengdu, 610059, China.
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Chengdu, 610059, China.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202508486. doi: 10.1002/anie.202508486. Epub 2025 Jun 22.
High-voltage and fast-charging lithium metal batteries (LMBs) are crucial for overcoming electric vehicle range and charging limitations. However, conventional carbonate electrolytes face intrinsic limitations in simultaneously achieving compatibility with high-voltage cathodes and lithium metal anodes. These limitations arise from sluggish Li transport kinetics and parasitic side reactions, both largely driven by excessive Li solvation energy inherent to carbonates. To address these challenges, we propose a conformational engineering strategy of fluorinated solvent molecules by developing a 2,2,3,3,4,4-hexafluoropentanedioic·anhydride (HFPA)-derived electrolyte (HFPE). The chair conformation of HFPA synergizes with its high F/C ratio to establish a low-polarity solvation environment, effectively reducing desolvation energy barriers. In addition, the HFPA-induced ligand preference for anion aggregation contributes to the formation of anion-rich dissolved sheaths while stabilizing the electrode-electrolyte interphases. The engineered HFPE demonstrates accelerated interfacial ion transport kinetics with an enhanced Li transference number of 0.64. When paired with LiNiCoMnO cathodes under stringent operating conditions (4.5 V cut-off voltage, 10 C-rate), HFPE-enabled cells exhibit exceptional cycling stability. Notably, industrial-scale 5.6 Ah lithium metal pouch cells employing HFPE maintain stable operation at 4.5 V, underscoring the practical viability of this conformation modulation approach. This work establishes a paradigm-shifting strategy for next-generation electrolyte design in practical high-energy-density LMBs.
高压快充锂金属电池对于克服电动汽车的续航里程和充电限制至关重要。然而,传统的碳酸盐电解质在同时实现与高压阴极和锂金属阳极的兼容性方面面临内在限制。这些限制源于缓慢的锂传输动力学和寄生副反应,两者在很大程度上是由碳酸盐固有的过高锂溶剂化能驱动的。为应对这些挑战,我们通过开发一种源自2,2,3,3,4,4-六氟戊二酸酐(HFPA)的电解质(HFPE),提出了一种氟化溶剂分子的构象工程策略。HFPA的椅式构象与其高氟/碳比协同作用,建立了一个低极性溶剂化环境,有效降低了去溶剂化能垒。此外,HFPA诱导的配体对阴离子聚集的偏好有助于形成富含阴离子的溶解鞘层,同时稳定电极-电解质界面。经过工程设计的HFPE表现出加速的界面离子传输动力学,锂迁移数提高到0.64。在严格的操作条件下(4.5 V截止电压,10 C倍率)与LiNiCoMnO阴极配对时,采用HFPE的电池表现出卓越的循环稳定性。值得注意的是,采用HFPE的工业规模5.6 Ah锂金属软包电池在4.5 V下保持稳定运行,突出了这种构象调制方法的实际可行性。这项工作为实用的高能量密度锂金属电池的下一代电解质设计建立了一种变革性策略。