Liberal Fonseca Lucas, Sousa Frederico B, Godinho Maria Clara, Jacobsen Gabriel Marques, Ames Alessandra, Taniguchi Takashi, Watanabe Kenji, Malard Leandro M, Teodoro Marcio Daldin, Campos Leonardo Cristiano
Departament of Physics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Department of Physics, Universidade Federal de São Carlos, São Carlos, São Paulo, Brasil.
Nanoscale. 2025 Jul 10;17(27):16388-16397. doi: 10.1039/d5nr01181g.
Transition metal dichalcogenides (TMDs) are promising sources of single-photon emitters (SPEs), which arise from defect-induced brightening of forbidden transitions. These SPEs, known as localized intervalley defect excitons, appear as doublets with an energy difference driven by electron-hole exchange interactions. Typically, spin forbidden transitions do not manifest in flat two-dimensional materials; however, the engineering of curved materials gives rise to novel phenomena. In this study, we engineered curved WSe monolayers, enabling the direct identification of dark doublets associated with spin-flip transitions of intravalley defect excitons. We present a comprehensive first characterization of these dark doublets revealing an intriguing linear polarization with a 45° phase difference compared to the bright doublet emission. Additionally, a new fine structure splitting emerges from exchange interactions, coupling bright and dark intravalley transitions. This effect can be attributed to the nanopillar induced curvature, which tilts the magnetic moment away from the -axis, leading to a mixing of in-plane and out-of-plane magnetic field effects. This mixing manifests in a spin-flip effect even in the out-of-plane configuration. Also, an unusually large in-plane -factor of 4.5 suggests this mixed configuration. This discovery provides critical insights into the coupling mechanisms between dark and bright excitonic states, opening new avenues for exploiting exciton behavior in nanostructured materials.
过渡金属二硫属化物(TMDs)是有前景的单光子发射器(SPEs)来源,其源于缺陷诱导的禁戒跃迁的亮化。这些被称为局域谷间缺陷激子的单光子发射器表现为具有由电子 - 空穴交换相互作用驱动的能量差的双重态。通常,自旋禁戒跃迁在二维平面材料中不显现;然而,弯曲材料的工程设计产生了新现象。在本研究中,我们设计了弯曲的WSe单分子层,能够直接识别与谷内缺陷激子的自旋翻转跃迁相关的暗双重态。我们首次全面表征了这些暗双重态,揭示了一种有趣的线性极化,与亮双重态发射相比有45°的相位差。此外,由于交换相互作用出现了一种新的精细结构分裂,耦合了亮的和暗的谷内跃迁。这种效应可归因于纳米柱诱导的曲率,它使磁矩偏离z轴,导致面内和面外磁场效应的混合。这种混合即使在面外配置中也表现为自旋翻转效应。而且,异常大的面内g因子为4.5表明了这种混合配置。这一发现为暗激子态和亮激子态之间的耦合机制提供了关键见解,为利用纳米结构材料中的激子行为开辟了新途径。