Suppr超能文献

高脂蛋白(a)患者亚组的表型分析:RED-CARPET研究中的数据驱动聚类分析

Phenomapping of subgroups in high-Lp(a) patients: a data-driven cluster analysis in RED-CARPET study.

作者信息

Zhang Shaozhao, Lin Xiaoyu, Zhan Rongjian, Zhou Huimin, Lai Yuhui, Huang Mengting, Li Bingzhen, Liao Xinxue, Zhuang Xiaodong

机构信息

Cardiology Department, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2Nd Road, Guangzhou, 510080, China.

NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-Sen University, Guangzhou, China.

出版信息

Clin Res Cardiol. 2025 Jun 23. doi: 10.1007/s00392-025-02669-6.

Abstract

BACKGROUND

The association between high levels of lipoprotein (a) [Lp(a)] and cardiovascular disease (CVD) is influenced by clinical characteristics. We aimed to explore the heterogeneity in high Lp(a) population with different clinical phenotypes and their relationship with atherosclerosis cardiovascular disease (ASCVD) risk.

METHODS AND RESULTS

We included 11,629 participants with Lp(a) measurement in RED-CARPET Study (ChiCTR2000039901) from the First Affiliated Hospital of Sun Yat-Sen University. The primary outcome was the occurrence of ASCVD events. The k-means clustering method was performed for baseline variables in participants with high Lp(a) levels (Lp(a) ≥ 50 mg/dL). Multivariate logistic regression model was used to assess the association between high Lp(a) level and ASCVD across clusters, with the low-Lp(a) group (Lp(a) < 50 mg/dL) serving as reference. Propensity score matching (PSM) was used to validate thefindings. High-Lp(a) group was categorized into four clusters: cluster 1 (dyslipidemia); cluster 2 (aged females); cluster 3 (males with an unhealthy lifestyle) and cluster 4 (anemia, renal insufficiency and hypercoagulability). Patients in different clusters exhibited differences in ASCVD risk. Patients with high-Lp(a) had significantly highest risk for ASCVD in cluster 3 (OR 2.12, 95% CI 1.62-2.76, p < 0.001) after adjusting for traditional risk factors. However, no significant association was observed in cluster 4 (OR 0.82, 95% CI 0.58-1.16, p = 0.233). These findings remained consistent after PSM.

CONCLUSIONS

Using a data-driven approach, high-Lp(a) patients can be stratified into four phenotypically distinct subgroups with different ASCVD risk.

摘要

背景

高水平脂蛋白(a)[Lp(a)]与心血管疾病(CVD)之间的关联受临床特征影响。我们旨在探讨具有不同临床表型的高Lp(a)人群的异质性及其与动脉粥样硬化性心血管疾病(ASCVD)风险的关系。

方法与结果

我们纳入了中山大学附属第一医院RED-CARPET研究(ChiCTR2000039901)中11629名进行Lp(a)检测的参与者。主要结局是ASCVD事件的发生。对高Lp(a)水平(Lp(a)≥50mg/dL)的参与者的基线变量进行k均值聚类分析。使用多变量逻辑回归模型评估跨聚类的高Lp(a)水平与ASCVD之间的关联,以低Lp(a)组(Lp(a)<50mg/dL)作为对照。采用倾向评分匹配(PSM)来验证研究结果。高Lp(a)组被分为四个聚类:聚类1(血脂异常);聚类2(老年女性);聚类3(生活方式不健康的男性)和聚类4(贫血、肾功能不全和高凝状态)。不同聚类的患者在ASCVD风险方面存在差异。在调整传统危险因素后,聚类3中高Lp(a)患者发生ASCVD的风险显著最高(比值比2.12,95%置信区间1.62-2.76,p<0.001)。然而,在聚类4中未观察到显著关联(比值比0.82,95%置信区间0.58-1.16,p=0.233)。PSM后这些结果仍然一致。

结论

采用数据驱动的方法,高Lp(a)患者可被分层为四个具有不同ASCVD风险的表型不同的亚组。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验