Suppr超能文献

基于单克隆抗体相互作用启发的小分子白细胞介素-23抑制剂的结构筛选

Structure-based screening of small-molecule interleukin-23 inhibitors inspired by monoclonal antibody interactions.

作者信息

Thai Khac-Minh, Vu Thi-Thanh-Thao, Mai Quang-Minh, Le Minh-Tri

机构信息

University of Health Sciences, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.

Research Center for Discovery and Development of Healthcare Products, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.

出版信息

Mol Divers. 2025 Jun 23. doi: 10.1007/s11030-025-11257-9.

Abstract

Interleukin-23 (IL-23) is a key driver of chronic inflammatory diseases, yet current therapies rely on costly monoclonal antibodies. This study aims to identify small-molecule IL-23 inhibitors using an in silico approach that mimics antibody interactions. The structure of IL-23 and the monoclonal antibody Risankizumab was reconstructed using homology modeling and deep learning. Key binding sites were characterized and used to generate 3D pharmacophore models, which guided virtual screening of compounds from DrugBank and ZINC12 databases. Top candidates were evaluated via ADMET filtering, molecular docking, molecular dynamics simulations and MM/GBSA binding free energy calculations. ZINC20572287 (r3-7) demonstrated stable binding within the IL-23p19 pocket and maintained strong hydrogen bonding over a 600 ns simulation. In contrast, no potent IL-12p40 inhibitors were identified. These findings suggest r3-7 as a promising scaffold for developing cost-effective IL-23-targeted therapeutics.

摘要

白细胞介素-23(IL-23)是慢性炎症性疾病的关键驱动因素,但目前的治疗方法依赖于昂贵的单克隆抗体。本研究旨在使用模拟抗体相互作用的计算机方法来识别小分子IL-23抑制剂。利用同源建模和深度学习重建了IL-23和单克隆抗体瑞莎珠单抗的结构。对关键结合位点进行了表征,并用于生成3D药效团模型,该模型指导了从DrugBank和ZINC12数据库中对化合物的虚拟筛选。通过ADMET筛选、分子对接、分子动力学模拟和MM/GBSA结合自由能计算对顶级候选物进行了评估。ZINC20572287(r3-7)在IL-23p19口袋内表现出稳定的结合,并在600纳秒的模拟过程中保持了强烈的氢键。相比之下,未鉴定出有效的IL-12p40抑制剂。这些发现表明r3-7是开发具有成本效益的IL-23靶向治疗药物的有前景的支架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验