Tejaswi Kondaveeti, Vikas Madala, Praharsha Himala, Mandal Pranshu, Chakraborty Sujan, Wolkenhauer Olaf, Bej Saptarshi
Indian Institute of Science Education and Research, Thiruvananthapuram, India.
Institute of Computer Science, University of Rostock, Germany; Leibniz-Institute for Food Systems Biology, Technical University of Munich, Freising, Germany; Stellenbosch Institute for Advanced Study, South Africa.
Comput Biol Med. 2025 Sep;195:110518. doi: 10.1016/j.compbiomed.2025.110518. Epub 2025 Jun 22.
Epileptic seizures can occur unpredictably, making real-time monitoring and early warning systems critical, especially in neonatal patients, where timely intervention can significantly improve outcomes. Neonatal seizures are often subtle and difficult to detect, increasing the need for automated, early prediction methods to aid clinical decision-making. While machine learning models have been widely used for seizure detection, their application in preemptive seizure warning remains underexplored. In this study, we propose a self-attention-based neural network that processes raw EEG data to detect pre-ictal signals, enabling early seizure prediction. A key challenge in using attention mechanisms for EEG analysis is the computational burden of handling high-frequency, long-duration signals. To address this, we introduce a second-wise summary statistics-based embedding that significantly reduces the input sequence length while retaining essential features. We validate our model using a publicly available dataset of 79 neonatal patients with physician-annotated EEG recordings. Our classifier achieves a maximum accuracy of 91 percent in distinguishing pre-ictal and ictal events from non-ictal signals. Notably, we evaluate our model on completely unseen patients, demonstrating its potential for real-world applicability in neonatal seizure prediction. This study provides a proof-of-concept for a preemptive seizure warning system, paving the way for AI-driven neonatal epilepsy management and broader clinical applications in seizure detection.
癫痫发作可能不可预测地发生,这使得实时监测和早期预警系统至关重要,尤其是在新生儿患者中,及时干预可显著改善预后。新生儿癫痫发作往往很隐匿,难以检测,这就增加了对自动化早期预测方法的需求,以辅助临床决策。虽然机器学习模型已被广泛用于癫痫发作检测,但其在发作前预警中的应用仍未得到充分探索。在本研究中,我们提出了一种基于自注意力的神经网络,该网络处理原始脑电图(EEG)数据以检测发作前信号,从而实现癫痫发作的早期预测。将注意力机制用于脑电图分析的一个关键挑战是处理高频、长时间信号的计算负担。为解决这一问题,我们引入了基于逐秒汇总统计的嵌入方法,该方法在保留基本特征的同时显著缩短了输入序列长度。我们使用一个公开可用的数据集对我们的模型进行了验证,该数据集包含79名有医生标注脑电图记录的新生儿患者。我们的分类器在区分发作前和发作期事件与非发作期信号方面达到了91%的最高准确率。值得注意的是,我们在完全未见过的患者身上评估了我们的模型,证明了其在新生儿癫痫发作预测中的实际应用潜力。这项研究为发作前预警系统提供了概念验证,为人工智能驱动的新生儿癫痫管理以及癫痫发作检测的更广泛临床应用铺平了道路。