Suppr超能文献

用于青光眼研究中动态体外研究的多层小梁网。

Multilayered trabecular meshwork for dynamic in vitro studies in glaucoma research.

作者信息

Gładysz Magdalena Z, Fernandes Micaela, Li Xiaopeng, Koch Marcus, Marchena Frendion, Hofman Anno, de Graaf Mariska, Wolters Justina Clarinda, Kamperman Marleen, Nagelkerke Anika, Włodarczyk-Biegun Małgorzata K

机构信息

Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, XB20, 9700 CE Groningen, the Netherlands; Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG, the Netherlands.

Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG, the Netherlands.

出版信息

Acta Biomater. 2025 Aug;202:262-275. doi: 10.1016/j.actbio.2025.06.035. Epub 2025 Jun 21.

Abstract

Glaucoma, an eye disease causing incremental vision loss, currently has no cure. Its primary cause is the malfunction of the trabecular meshwork (TM), a multilayered tissue in the eye responsible for draining aqueous humor (AH) from the anterior chamber. TM clogging increases outflow resistance, elevates intraocular pressure (IOP), and damages optic nerves, leading to irreversible blindness. Existing in vitro TM models are suboptimal, as they lack the hierarchical structure of the TM. This article introduces a dynamic in vitro TM model, featuring a multilayered scaffold architecture 3D printed via melt electrowriting (MEW), and integrated with a flow system that enables continuous pressure monitoring during perfusion at native flow rates. Printed scaffolds supported the growth of primary adult human TM cells that grew on top and between the fibers. Cellularized scaffolds were tested under static and dynamic conditions. Over 3-5 days, pressure monitoring showed increased outflow resistance due to cell proliferation. Proteomic analysis revealed distinct changes in protein expression related to protein synthesis and respiration of cells grown under flow. Lat-B administration resulted in decreased pressure values and depolymerized actin filaments. These findings suggest that the proposed model is a promising alternative for in vitro glaucoma drug testing. STATEMENT OF SIGNIFICANCE: This study introduces a model of the trabecular meshwork (TM), a tissue in the eye involved in glaucoma, a common eye disease that currently has no cure. Using 3D printing, we created a multilayered scaffold that mimics the structure and function of the human TM. This allows us to study how cells behave and how drugs work under realistic conditions. Unlike existing models, ours accurately replicates all three layers of the TM, providing an advanced dynamic platform for glaucoma research. This innovation could help develop new treatments by offering a more reliable model for testing drugs and understanding how glaucoma works, making a significant impact on eye research.

摘要

青光眼是一种会导致视力逐渐丧失的眼部疾病,目前无法治愈。其主要病因是小梁网(TM)功能失调,小梁网是眼睛中的一种多层组织,负责从前房引流房水(AH)。小梁网堵塞会增加房水流出阻力,升高眼压(IOP),并损害视神经,导致不可逆转的失明。现有的体外小梁网模型并不理想,因为它们缺乏小梁网的分层结构。本文介绍了一种动态体外小梁网模型,其具有通过熔体静电纺丝(MEW)3D打印的多层支架结构,并集成了一个流动系统,能够在以自然流速灌注期间进行连续压力监测。打印的支架支持原代成人小梁网细胞在纤维顶部和纤维之间生长。对细胞化支架在静态和动态条件下进行了测试。在3至5天的时间里,压力监测显示由于细胞增殖,流出阻力增加。蛋白质组学分析揭示了与流动条件下生长的细胞的蛋白质合成和呼吸相关的蛋白质表达的明显变化。施用Lat - B导致压力值降低和肌动蛋白丝解聚。这些发现表明,所提出的模型是体外青光眼药物测试的一个有前途的替代方案。重要性声明:本研究介绍了小梁网(TM)的模型,小梁网是眼睛中与青光眼相关的一种组织,青光眼是一种常见的目前无法治愈的眼部疾病。通过3D打印,我们创建了一个模仿人类小梁网结构和功能的多层支架。这使我们能够研究细胞在现实条件下的行为以及药物的作用方式。与现有模型不同,我们的模型准确地复制了小梁网的所有三层,为青光眼研究提供了一个先进的动态平台。这一创新可以通过提供一个更可靠的药物测试模型和理解青光眼发病机制的模型来帮助开发新的治疗方法,对眼科研究产生重大影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验