文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从长角甲虫(Cerambycidae latreille)分离的泡盛曲霉AFE1中热稳定嗜酸性纤维素酶的生产、纯化及特性研究

Production, purification, and characterization of a thermally stable, Acidophilic Cellulase from Aspergillus awamori AFE1 isolated from Longhorn beetle (Cerambycidae latreille).

作者信息

Afe Ayoola E, Lawal Olusola T, Bamidele Olufemi S, Badshah Farhad, Oyelere Bukola R, Efomah Andrew N, Abdel-Maksoud Mostafa A, Fatima Sabiha, Alamri Abdulaziz, El-Tayeb Mohamed A, Sanni David M

机构信息

Enzyme and Microbial Technology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, 340252, Nigeria.

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.

出版信息

Microb Cell Fact. 2025 Jun 24;24(1):145. doi: 10.1186/s12934-025-02755-4.


DOI:10.1186/s12934-025-02755-4
PMID:40551113
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12186396/
Abstract

BACKGROUND: The relentless pursuit of cost-effective cellulase, a key enzyme in the biocatalytic conversion of cellulose, has led to exploring insect guts as potential sources of biocatalysts. Herbivorous insects' intestinal tracts are recognized as rich reservoirs of cellulolytic microorganisms. This study investigates cellulase production, purification, and characterization from Aspergillus awamori AFE1, isolated from the gut of longhorn beetles (Cerambycidae latreille). Basic cellulase production parameters were optimized. The cellulase produced under optimum conditions was purified by ammonium sulphate precipitation and chromatographic methods, followed by characterization of the purified enzyme. RESULTS: Optimum cellulase production was observed at pH 5 and 30 °C, using cellulose and NaNO as carbon and nitrogen sources. Cellulase was purified to homogeneity, with a molecular weight of 48.5 kDa. The cellulase exhibited optimal activity at pH 5.0 and maintained stability at an acidic pH of 4.0, showing 80% activity after 2 h and 40% activity remaining after 6 h. The optimal temperature for cellulase activity was 60 °C, with maximal stability at 30 °C, retaining 63% of its initial activity after 2 h. However, significant activity of 50% was noted at 50 °C for 2 h. Interestingly, the enzyme showed great stability against organic solvents up to 4 h and retained significant enzymatic activity after 5 h. Cellulase activity was also enhanced by divalent metal ions, Fe and Zn, but was markedly inhibited by urea and EDTA, and monovalent Na, K, including some divalent metal ions, Cu and Mn. It displayed K and V values of 3.86 mM and 0.3159 mg/mL/min, respectively. CONCLUSION: This study has shown Aspergillus awamori AFE1, isolated from the Longhorn beetle gut, as a unique source of acid-stable, thermostable, and organic solvent-resistant cellulase with industrial potential. Its unique enzymatic properties offer promising applications in biofuel production and lignocellulosic biomass conversion.

摘要

背景:对具有成本效益的纤维素酶(纤维素生物催化转化中的关键酶)的不懈追求,促使人们探索昆虫肠道作为生物催化剂的潜在来源。食草昆虫的肠道被认为是纤维素分解微生物的丰富储存库。本研究调查了从长角甲虫(Cerambycidae latreille)肠道中分离出的泡盛曲霉AFE1产生、纯化和表征纤维素酶的情况。优化了纤维素酶的基本生产参数。在最佳条件下产生的纤维素酶通过硫酸铵沉淀和色谱方法进行纯化,随后对纯化后的酶进行表征。 结果:以纤维素和硝酸钠作为碳源和氮源,在pH 5和30°C条件下观察到最佳纤维素酶产量。纤维素酶被纯化至同质,分子量为48.5 kDa。该纤维素酶在pH 5.0时表现出最佳活性,并在酸性pH 4.0下保持稳定,2小时后显示80%的活性,6小时后仍保留40%的活性。纤维素酶活性的最佳温度为60°C,在30°C时具有最大稳定性,2小时后保留其初始活性的63%。然而,在50°C下2小时观察到50%的显著活性。有趣的是,该酶在有机溶剂中长达4小时表现出极大的稳定性,5小时后仍保留显著的酶活性。二价金属离子铁和锌也增强了纤维素酶活性,但尿素和乙二胺四乙酸以及一价钠、钾(包括一些二价金属离子铜和锰)显著抑制了该活性。它的米氏常数(Km)和最大反应速度(Vmax)值分别为3.86 mM和0.3159 mg/mL/min。 结论:本研究表明,从长角甲虫肠道中分离出的泡盛曲霉AFE1是一种具有工业潜力的独特的酸稳定、热稳定和耐有机溶剂的纤维素酶来源。其独特的酶学性质在生物燃料生产和木质纤维素生物质转化方面具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/affe19142256/12934_2025_2755_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/c14b2745fc3e/12934_2025_2755_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/2ff56c37eb94/12934_2025_2755_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/2752c8ccc485/12934_2025_2755_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/54922f633d2e/12934_2025_2755_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/ed2c8fb2002e/12934_2025_2755_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/5d5f3e594839/12934_2025_2755_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/ea5dd25ddecd/12934_2025_2755_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/a1d06745adc7/12934_2025_2755_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/06f27931faf3/12934_2025_2755_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/affe19142256/12934_2025_2755_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/c14b2745fc3e/12934_2025_2755_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/2ff56c37eb94/12934_2025_2755_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/2752c8ccc485/12934_2025_2755_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/54922f633d2e/12934_2025_2755_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/ed2c8fb2002e/12934_2025_2755_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/5d5f3e594839/12934_2025_2755_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/ea5dd25ddecd/12934_2025_2755_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/a1d06745adc7/12934_2025_2755_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/06f27931faf3/12934_2025_2755_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d1/12186396/affe19142256/12934_2025_2755_Fig10_HTML.jpg

相似文献

[1]
Production, purification, and characterization of a thermally stable, Acidophilic Cellulase from Aspergillus awamori AFE1 isolated from Longhorn beetle (Cerambycidae latreille).

Microb Cell Fact. 2025-6-24

[2]
A glucose tolerant β-glucosidase from a newly isolated Neofusicoccum parvum strain F7: production, purification, and characterization.

Sci Rep. 2023-3-29

[3]
Bioprocessing and characterization of thermostable phytase from Aspergillus terreus, an endophyte of Catharanthus roseus, with a potential activity to hydrolyze phytic acid in wheat bran.

BMC Biotechnol. 2025-7-8

[4]
Response surface optimization for cellulase production from Enterococcus faecium and Stutzerimonas stutzeri isolated from Gossypium arboretum and Solanum melongena soil.

Sci Rep. 2025-7-5

[5]
Biochemical characterization of purified phytase produced from AFE1 associated with the gastrointestinal tract of longhorn beetle ().

Mycologia. 2024

[6]
Cellulase from for biofuel application: enzymatic characterization and inhibition tolerance investigation.

Prep Biochem Biotechnol. 2025

[7]
Purification and characterization of β-galactosidase from Aspergillus niger PQ570689 for lactose hydrolysis and prebiotic synthesis.

Folia Microbiol (Praha). 2025-7-4

[8]
Purification and characterization of cellulase produced by Bacillus sp. HMM.

Antonie Van Leeuwenhoek. 2025-6-27

[9]
Optimization, purification and characterization of an intracellular salt-tolerant esterase Est40 from Vreelandella sp. CH40.

Arch Microbiol. 2025-7-9

[10]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

本文引用的文献

[1]
Biochemical characterization of a bilfunctional endoglucanase/glucomannanase derived from mountain soil.

Biotechnol Lett. 2025-3-14

[2]
Current status and emerging frontiers in enzyme engineering: An industrial perspective.

Heliyon. 2024-6-7

[3]
Biochemical characterization of purified phytase produced from AFE1 associated with the gastrointestinal tract of longhorn beetle ().

Mycologia. 2024

[4]
Current perspective on production and applications of microbial cellulases: a review.

Bioresour Bioprocess. 2021-10-5

[5]
Characterization of Cellulose-Degrading Bacteria Isolated from Silkworm Excrement and Optimization of Its Cellulase Production.

Polymers (Basel). 2023-10-19

[6]
Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: An all-inclusive review.

Carbohydr Polym. 2023-12-1

[7]
Current Insights in Fungal Importance-A Comprehensive Review.

Microorganisms. 2023-5-24

[8]
Screening of cellulose-degrading yeast and evaluation of its potential for degradation of coconut oil cake.

Front Microbiol. 2022-10-6

[9]
Gut Microbiota of Larvae Degrade Maize Cellulose.

Front Microbiol. 2022-4-11

[10]
Effect of pH on the Electrochemical Behavior of Hydrogen Peroxide in the Presence of .

Front Bioeng Biotechnol. 2021-12-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索