Suppr超能文献

三维金属碳化硼:稳定性与性质

Three-Dimensional Metallic Boron Carbide: Stability and Properties.

作者信息

Hussain Kashif, Liu Qiang, Chen Bin, Sarwar Maryam, Munir Fatima, Teng Ying, Xie Heping, Shen Suling, Ouyang Zhengbiao

机构信息

THz Technology Laboratory; Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, China.

School of Materials Science and Engineering, Peking University, China.

出版信息

J Comput Chem. 2025 Jun 30;46(17):e70168. doi: 10.1002/jcc.70168.

Abstract

The design of novel materials through the strategic modification of their structural building blocks represents a powerful approach to achieving significant advancements in materials science. This study thoroughly examines the structural, mechanical, electronic, acoustic, and thermodynamic properties of a three-dimensional monoclinic boron carbide (3D m-BC) structure using first-principles methods based on density functional theory (DFT). We introduce a unique cage-based 3D monoclinic boron carbide structure, constructed from 4-, 5-, and 6-membered rings, which demonstrates remarkable dynamic, thermal, and mechanical stability. Our advanced first-principles calculations reveal that this architecture exhibits metallic characteristics, as confirmed by both GGA-PBE and HSE06 hybrid functionals. In contrast to the ductile and low Vickers hardness 3D-BC, the 3D m-BC displays significant brittleness, a high Vickers hardness of 45.40 GPa (32.36 GPa), a low Poisson's ratio of 0.188, and a universal anisotropic index of 0.903. When compared to established thermal coating (TBC) materials such as yttria-stabilized zirconia (YSZ), which has a fracture toughness range of 2.0 to 2.3 MPa m and a minimum thermal conductivity of 2.20 W m K, the 3D m-BC demonstrates superior fracture toughness of 5.336 MPa m and a minimum thermal conductivity of 3.773 W m K. These exceptional characteristics suggest that 3D m-BC could serve as a compelling candidate for applications in environmental protection, thermal barriers, and oxygen-resistant coatings. The material exhibits a Debye temperature of 1524.15 K, an acoustic Grüneisen constant of 1.240, and a phonon thermal conductivity of 85.52 W m K at 300 K. Its melting temperature is 3311.94 K, with a thermal expansion coefficient of 7.337 μK and notable phonon inelastic scattering. These findings expand the range of boron carbide materials with new properties, presenting exciting prospects for advanced engineering applications and encouraging further experimental synthesis efforts.

摘要

通过对结构构建单元进行策略性修饰来设计新型材料,是在材料科学领域取得重大进展的有力途径。本研究基于密度泛函理论(DFT)的第一性原理方法,深入研究了三维单斜碳化硼(3D m-BC)结构的结构、力学、电子、声学和热力学性质。我们引入了一种独特的基于笼状的三维单斜碳化硼结构,它由4元、5元和6元环构成,展现出显著的动力学、热学和力学稳定性。我们先进的第一性原理计算表明,这种结构具有金属特性,广义梯度近似(GGA-PBE)和HSE06杂化泛函均证实了这一点。与具有延展性且维氏硬度较低的3D-BC不同,3D m-BC表现出显著的脆性、45.40 GPa(32.36 GPa)的高维氏硬度、0.188的低泊松比以及0.903的通用各向异性指数。与既定的热障涂层(TBC)材料如氧化钇稳定氧化锆(YSZ)相比,YSZ的断裂韧性范围为2.0至2.3 MPa m,最小热导率为2.20 W m K,而3D m-BC展现出5.336 MPa m的卓越断裂韧性和3.773 W m K的最小热导率。这些优异特性表明,3D m-BC可能是环境保护、热障和抗氧涂层应用的有力候选材料。该材料在300 K时的德拜温度为1524.15 K,声学格林爱森常数为1.240,声子热导率为85.52 W m K。其熔点为3311.94 K,热膨胀系数为7.337 μK,且具有显著的声子非弹性散射。这些发现拓展了具有新特性的碳化硼材料范围,为先进工程应用带来了令人兴奋的前景,并鼓励进一步开展实验合成工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验