Suppr超能文献

用于增强微型SiO负极锂存储性能的模量工程硅酸盐缓冲基质。

Modulus-Engineered Silicates-Buffering Matrix for Enhanced Lithium Storage of Micro-Sized SiO Anodes.

作者信息

Lv Tuan, Zhou Feng, He Yang, Zhang Yingxi, Feng Haoqin, Liu Yu, Yu Xianwei, Gao Biao, Chu Paul K, Huo Kaifu

机构信息

Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.

The State Key Laboratory of Advanced Refractories, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, China.

出版信息

Small Methods. 2025 Jun 24:e2500556. doi: 10.1002/smtd.202500556.

Abstract

Microscale Silicon suboxide (SiO) is a promising anode material and elemental doping is an effective strategy to enhance the initial coulombic efficiency (ICE) and cycle stability of SiO by converting SiO into the electrochemically inert silicates-buffering matrix. However, the impact of the silicates-buffering modulus on the electrochemical properties is not well understood. Herein, the modulus of the silicate-buffering matrix is found to be crucial to restraining internal cracks and improving the electrochemical properties of microscale SiO during cycling. Compared with the LiSiO and MgSiO buffering matrixes, MgSiO has a higher modulus and yield stress resulting in better resistance to Si expansion-induced cracks during cycling. Moreover, MgSiO has a smaller Li diffusion energy barrier than LiSiO and MgSiO. Consequently, the microscale Mg-doped SiO with the MgSiO buffering matrix has a high ICE, excellent structural integrity, and small electrode expansion during cycling. The results provide insights into the design of microscale SiO anode materials by optimizing the silicates-buffering matrix for high-energy Li-ion batteries.

摘要

微尺度氧化硅(SiO)是一种很有前景的负极材料,元素掺杂是一种有效的策略,通过将SiO转化为电化学惰性的硅酸盐缓冲基体来提高SiO的首次库仑效率(ICE)和循环稳定性。然而,硅酸盐缓冲模量对电化学性能的影响尚未得到充分理解。在此,发现硅酸盐缓冲基体的模量对于抑制内部裂纹和改善微尺度SiO在循环过程中的电化学性能至关重要。与LiSiO和MgSiO缓冲基体相比,MgSiO具有更高的模量和屈服应力,从而在循环过程中对Si膨胀引起的裂纹具有更好的抗性。此外,MgSiO的Li扩散能垒比LiSiO和MgSiO小。因此,具有MgSiO缓冲基体的微尺度Mg掺杂SiO具有高ICE、优异的结构完整性以及在循环过程中较小的电极膨胀。这些结果为通过优化用于高能锂离子电池的硅酸盐缓冲基体来设计微尺度SiO负极材料提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验