Suppr超能文献

电化学抛光铜箔上的GLAD衍生硅纳米阵列:一种用于高性能锂离子电池的有前景的阳极。

GLAD-Derived Silicon Nanoarrays on Electrochemically Polished Cu Foil: A Promising Anode for High-Performance Lithium-Ion Batteries.

作者信息

Mallick Sourav, Huang Xiaosong, Gupta Ram B, Ye Dexian

机构信息

Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States.

Materials & Manufacturing Systems Research Laboratory, General Motors Research & Development Center, Warren, Michigan 48090, United States.

出版信息

ACS Appl Mater Interfaces. 2025 Jun 25;17(25):36661-36668. doi: 10.1021/acsami.5c05422. Epub 2025 Jun 13.

Abstract

Nanostructured silicon (Si) anodes with various dimensions (0- or 1D) are widely explored in the manufacturing of high-energy-density lithium-ion batteries (LIBs) to mitigate volume expansion during cycling. However, most of them suffer from multiple issues, such as phase impurity, inhomogeneity in particle size, and poor mechanical strength, resulting in poor rate capability, cycle performance, and Coulombic efficiency. In this work, a modified physical vapor deposition technique, known as the glancing angle deposition (GLAD) method, is utilized to produce pure Si nanospring arrays on Cu foil. The nanospring architecture, with controlled dimensions, facilitates Li diffusion throughout the amorphous Si and offers good rate performance. In this case, electrochemical polishing of Cu foil has played a pivotal role to achieve a very high specific capacity of 2800 mAh g at 300 mA g and a very good rate capability of up to 4500 mA g. The electrochemical polishing facilitates uniform deposition of the Si nanosprings on the Cu surface and offers better structural robustness compared to the unpolished one.

摘要

具有各种尺寸(零维或一维)的纳米结构硅(Si)阳极在高能量密度锂离子电池(LIB)制造中得到广泛探索,以减轻循环过程中的体积膨胀。然而,它们中的大多数存在多个问题,如相杂质、粒径不均匀和机械强度差,导致倍率性能、循环性能和库仑效率不佳。在这项工作中,一种称为掠角沉积(GLAD)方法的改进物理气相沉积技术被用于在铜箔上制备纯硅纳米弹簧阵列。具有可控尺寸的纳米弹簧结构促进了锂在整个非晶硅中的扩散,并提供了良好的倍率性能。在这种情况下,铜箔的电化学抛光在实现300 mA g下2800 mAh g的非常高的比容量和高达4500 mA g的非常好的倍率性能方面发挥了关键作用。与未抛光的铜箔相比,电化学抛光促进了硅纳米弹簧在铜表面的均匀沉积,并提供了更好的结构稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/597a/12203465/903e46e0ea45/am5c05422_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验