Pandit Atanu, Mondal Partha Pratim, Singh Manpreet, Neogi Subhadip
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India.
Inorg Chem. 2025 Jul 7;64(26):13245-13256. doi: 10.1021/acs.inorgchem.5c01626. Epub 2025 Jun 24.
The advancement of multifunctional metal-organic frameworks (MOFs) incorporating task-specific sites holds significant potential for carbon footprint reduction. We report the synthesis of a thermochemically robust and microporous, charged Co(II)-organic framework, assembled from a -NH-functionalized dicarboxylate ligand, a triazine core containing a tris-pyridyl linker, and an in situ generated [Co(μ-O)(COO)N] secondary building unit. Interestingly, -symmetric linkers partition the larger channels into trigonal-bipyramidal-shaped smaller cages. The activated MOF demonstrates substantial CO adsorption with moderate framework-gas interaction and also divulges minor CO loss during multiple capture-release cycles. The presence of diverse polar sites benefits the material, exhibiting selective CO adsorption over N and CH with a 23% enhancement in CO/N selectivity upon increasing the temperature from 273 to 298 K. This anionic framework acts as a solvent-free CO cycloaddition catalyst that works effectively under atmospheric pressure with appreciable reusability, wide substrate tolerance, and pore-partition-governed size selectivity. The pendent -NH sites facilitate epoxide activation through hydrogen-bonding interactions, complemented by the π-electron-deficient triazine core moiety. In addition to computational studies, the crucial roles of pore-affixed functionalities in CO fixation are corroborated by diverse control experiments, including substrate-mediated fluorescence modulation, which rationalizes the reaction mechanism. This study provides valuable insights into the modulation of the microenvironment in cage-based MOFs for effective adsorption, separation, and catalytic fixation of CO.
包含特定任务位点的多功能金属有机框架(MOF)的发展在减少碳足迹方面具有巨大潜力。我们报道了一种热化学稳定且微孔的带电荷钴(II)有机框架的合成,它由一个-NH官能化的二羧酸配体、一个含有三吡啶连接体的三嗪核心以及一个原位生成的[Co(μ-O)(COO)N]二级构筑单元组装而成。有趣的是,对称连接体将较大的通道分隔成三角双锥形状的较小笼子。活化后的MOF表现出大量的CO吸附,框架与气体相互作用适中,并且在多次捕获-释放循环中也显示出少量的CO损失。多种极性位点的存在对该材料有利,在273 K至298 K温度升高时,对CO的吸附选择性高于N和CH,CO/N选择性提高了23%。这种阴离子框架作为一种无溶剂的CO环加成催化剂,在大气压下能有效工作,具有可观的可重复使用性、广泛的底物耐受性和孔分隔控制的尺寸选择性。悬垂的-NH位点通过氢键相互作用促进环氧化物活化,三嗪核心部分的缺π电子起到补充作用。除了计算研究外,多种对照实验也证实了孔固定官能团在CO固定中的关键作用,包括底物介导的荧光调制,这使反应机理合理化。这项研究为基于笼子的MOF中微环境的调控提供了有价值的见解,以实现CO的有效吸附、分离和催化固定。