Kundu Subrata Kumar, Zeeshan Muhammad, Watthaisong Panuwat, Heyden Andreas
Department of Chemical Engineering, University of South Carolina, 301 South Main Street, Columbia, South Carolina 29208, United States.
J Chem Theory Comput. 2025 Jun 24;21(12):6121-6134. doi: 10.1021/acs.jctc.5c00427. Epub 2025 Jun 11.
Zeolites are used in the chemical and separation industries for their exceptional selectivity, adsorption capacity, regenerability, and stability in gas and liquid phase processing. Here, we developed an explicit solvation method for predicting solvent/condensed phase effects on adsorption free energies in microporous media such as zeolites based on the hybrid quantum mechanical/molecular mechanical free energy perturbation (QM/MM-FEP) technique. Our explicit solvation method for zeolite systems, called eSZS, aims to capture site-specific interactions during the adsorption process at the Brønsted acid sites of H-MFI zeolite while still considering the diverse configuration space of the solvent molecules. This strategy is ideal for chemical reactions or adsorbates that interact with the microporous medium in few distinct adsorbate/transition state configurations, i.e., the harmonic or similar approximations are acceptable for the adsorbate/transition state while such approximations break down for the solvent molecules that require extensive configuration space sampling. In this way, our approach effectively overcomes the limitations of implicit solvation models and classical force field methods for describing solvation effects on chemical reactions within porous materials such as zeolites. Specifically, in this study, we investigated various aspects of our hybrid QM/MM approach, including QM cluster size dependencies in a periodic electrostatically embedded cluster model (PEECM), rules for link atoms at the QM/MM boundary, and functional and basis set considerations for converged and reasonably accurate gas and aqueous phase methanol and ethanol adsorption free energy predictions in H-MFI. For gas phase adsorption of methanol and ethanol in H-MFI at a Brønsted acid site in T12 position, we compute adsorption free energies at 298 K of -0.61 and -0.75 eV, respectively, using a PEECM containing 50 Si and 1 Al atom with ωB97x-D/def2-TZVP level of theory. For solvent effect calculations, we sample the aqueous phase using grand canonical Monte Carlo (GCMC) simulations to (1) obtain a mean field of electrostatic interactions in the reaction system and (2) perform a rigorous free energy perturbation calculation. Similar to the experimentally and computationally observed endergonic solvation effects observed for hydrocarbon adsorption on metal surfaces, we also observe that a condensed aqueous environment destabilizes methanol and ethanol at these acid sites in H-MFI at 298 K. Specifically, the computed solvation free energies of adsorption (ΔΔ) for methanol and ethanol are +0.44 and +0.54 eV, respectively. From this study, it is evident that adsorbates (methanol and ethanol) are competing with water for adsorption space inside the H-MFI zeolite, leading to an endergonic solvation effect. We expect that the endergonic, aqueous solvent effect during adsorption in microporous zeolites is highly tunable by changing the pore size and hydrophobicity of the microporous material as this will affect the water density inside the pore structure.
沸石因其在气液相处理中具有卓越的选择性、吸附容量、可再生性和稳定性,而被应用于化学和分离行业。在此,我们基于混合量子力学/分子力学自由能微扰(QM/MM-FEP)技术,开发了一种显式溶剂化方法,用于预测溶剂/凝聚相对沸石等微孔介质中吸附自由能的影响。我们针对沸石体系的显式溶剂化方法,称为eSZS,旨在捕捉H-MFI沸石布朗斯特酸位点吸附过程中的位点特异性相互作用,同时仍考虑溶剂分子的多样构型空间。对于在少数不同吸附质/过渡态构型下与微孔介质相互作用的化学反应或吸附质而言,该策略是理想的,即对于吸附质/过渡态,谐波或类似近似是可接受的,而对于需要广泛构型空间采样的溶剂分子,此类近似则不适用。通过这种方式,我们的方法有效克服了隐式溶剂化模型和经典力场方法在描述对沸石等多孔材料内化学反应的溶剂化效应方面的局限性。具体而言,在本研究中,我们研究了混合QM/MM方法的各个方面,包括周期性静电嵌入簇模型(PEECM)中的QM簇尺寸依赖性、QM/MM边界处连接原子的规则,以及在H-MFI中收敛且合理准确地预测气相和水相甲醇及乙醇吸附自由能时的泛函和基组考量。对于甲醇和乙醇在H-MFI中T12位置的布朗斯特酸位点的气相吸附,我们使用包含50个硅原子和1个铝原子的PEECM以及ωB97x-D/def2-TZVP理论水平,计算出298 K时的吸附自由能分别为-0.61和-0.75 eV。对于溶剂效应计算,我们使用巨正则蒙特卡罗(GCMC)模拟对水相进行采样,以(1)获得反应体系中静电相互作用的平均场,以及(2)进行严格的自由能微扰计算。与在金属表面烃吸附中实验和计算观察到的吸热溶剂化效应类似,我们还观察到在298 K时,凝聚的水环境会使甲醇和乙醇在H-MFI中的这些酸位点不稳定。具体而言,计算得到的甲醇和乙醇的吸附溶剂化自由能(ΔΔ)分别为+0.44和+0.54 eV。从这项研究可以明显看出,吸附质(甲醇和乙醇)与水在H-MFI沸石内部争夺吸附空间,导致吸热溶剂化效应。我们预计,通过改变微孔材料的孔径和疏水性,微孔沸石吸附过程中的吸热水性溶剂效应是高度可调的,因为这将影响孔结构内的水密度。