Suppr超能文献

用于单原子电催化的衰减全反射表面增强红外吸收光谱法

ATR-SEIRAS for Single-Atom Electrocatalysis.

作者信息

Wang Yinyin, Ding Jie, Su Chenliang, Shen Zheng, Liu Bin

机构信息

International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.

Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.

出版信息

Acc Chem Res. 2025 Jul 15;58(14):2282-2295. doi: 10.1021/acs.accounts.5c00303. Epub 2025 Jun 24.

Abstract

ConspectusSingle-atom catalysts (SACs) represent a revolutionary paradigm in heterogeneous catalysis and display exceptional atom utilization efficiency with well-defined active sites. These distinctive characteristics position SACs as pivotal materials for advancing electrochemical energy conversion and storage technologies. The active center atoms are typically anchored by coordination with oxygen (O), nitrogen (N), and other functional groups on the surface of the supports. When precisely anchored onto tailored supports, these isolated active centers offer considerable promise for enhanced catalytic activity and selectivity. Nevertheless, the inherent complexity of the multistep proton-coupled electron transfer processes in electrochemical energy conversion and storage systems presents major challenges for the mechanistic elucidation and rational design of catalytic architectures to optimize reaction kinetics. Recent advancements in / characterizations, most notably attenuated total reflection-surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), have greatly stimulated SACs research. ATR-SEIRAS amplifies the vibrational signal at the interface, enabling real-time tracking of transient interfacial species at submonolayer concentrations. Moreover, it simultaneously captures the dynamic structural evolution of single-atom motifs during the catalytic cycles.In this Account, we exemplify our recent endeavors in characterizing single-atom electrocatalysts using ATR-SEIRAS. Through the integration of the ATR-SEIRAS technique with precisely engineered SACs, we elucidate the critical structure-activity relationships of SACs in the CO/CO reduction reaction (CO/CORR), oxygen reduction reaction (ORR), and nitrate reduction reaction (NORR). We begin with a fundamental analysis of the ATR-SEIRAS enhancement mechanisms, categorized into physical and chemical enhancement mechanisms. Building on this theoretical foundation, ATR-SEIRAS demonstrates the exceptional capability of tracing reaction pathways in single-atom electrocatalysis. This is achieved through vibrational fingerprint identification of oxygen-containing intermediates (O/O-H), carbonaceous moieties (C-H/C-O), and nitrogenous adsorbates (N-H/N-O). Furthermore, we discuss the role of ATR-SEIRAS in studying the stability of SACs in electrocatalytic CO/CORR, ORR, and NORR. Additionally, ATR-SEIRAS can be utilized to determine the function of active sites in single-atom catalyst motifs, which is of paramount importance for gaining a deeper understanding of the reaction mechanisms and for the rational design of highly efficient catalysts. Crucially, ATR-SEIRAS plays a vital role in monitoring the dynamic structure evolution of SACs, thereby aiding in decoding the complex interactions between catalytic structure and performance. Last but not least, we demonstrate the use of ATR-SEIRAS for verifying density functional theory (DFT) calculation results in single-atom electrocatalysis. This Account provides a comprehensive perspective on the application of ATR-SEIRAS in studying single-atom electrocatalysis. The enhanced understanding of active site dynamics and reaction mechanisms obtained shall offer valuable insights for the rational design of high-performance, durable SACs for next-generation electrochemical energy conversion and storage applications.

摘要

综述

单原子催化剂(SACs)代表了多相催化领域的一种革命性范式,具有明确的活性位点,展现出卓越的原子利用效率。这些独特特性使SACs成为推动电化学能量转换和存储技术发展的关键材料。活性中心原子通常通过与载体表面的氧(O)、氮(N)及其他官能团配位而锚定。当精确锚定在定制的载体上时,这些孤立的活性中心在提高催化活性和选择性方面具有巨大潜力。然而,电化学能量转换和存储系统中多步质子耦合电子转移过程的固有复杂性,给催化结构的机理阐释和合理设计以优化反应动力学带来了重大挑战。表征方面的最新进展,尤其是衰减全反射-表面增强红外吸收光谱(ATR-SEIRAS),极大地推动了SACs的研究。ATR-SEIRAS增强了界面处的振动信号,能够实时跟踪亚单层浓度下的瞬态界面物种。此外,它还能同时捕捉催化循环过程中单原子结构单元的动态结构演变。

在本综述中,我们举例说明了我们最近使用ATR-SEIRAS表征单原子电催化剂的工作。通过将ATR-SEIRAS技术与精确设计的SACs相结合,我们阐明了SACs在CO/CO还原反应(CO/CORR)、氧还原反应(ORR)和硝酸盐还原反应(NORR)中的关键结构-活性关系。我们首先对ATR-SEIRAS增强机制进行了基础分析,分为物理增强机制和化学增强机制。基于这一理论基础,ATR-SEIRAS展示了在单原子电催化中追踪反应路径的卓越能力。这是通过对含氧化合物中间体(O/O-H)、含碳部分(C-H/C-O)和含氮吸附物(N-H/N-O)的振动指纹识别来实现的。此外,我们讨论了ATR-SEIRAS在研究SACs在电催化CO/CORR、ORR和NORR中的稳定性方面的作用。此外,ATR-SEIRAS可用于确定单原子催化剂结构单元中活性位点的功能,这对于深入理解反应机理和合理设计高效催化剂至关重要。至关重要的是,ATR-SEIRAS在监测SACs的动态结构演变方面发挥着关键作用,从而有助于解读催化结构与性能之间的复杂相互作用关系。最后但同样重要的是,我们展示了ATR-SEIRAS在验证单原子电催化中密度泛函理论(DFT)计算结果方面的应用。本综述全面介绍了ATR-SEIRAS在研究单原子电催化中的应用。对活性位点动力学和反应机理的深入理解,将为下一代电化学能量转换和存储应用中高性能、耐用的SACs的合理设计提供有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验