Constant Caroline, Larson A Noelle, Polly David W, Aubin Carl-Eric
Department of Orthopedic Surgery, Mayo Clinic, 200 1 st Street Southwest, Rochester, MN, 55905, USA.
Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, H3 T 1 J4, Canada.
Spine Deform. 2025 Jun 24. doi: 10.1007/s43390-025-01125-9.
Posterior spinal instrumentation and fusion (PSF) is the gold standard for severe adolescent idiopathic scoliosis (AIS), yet instrumentation strategies vary widely, often leading to suboptimal results. Deep learning's potential in AIS planning is underexplored.
This study trained and validated an artificial neural network multi-task learning model (NNML) using preoperative clinical and radiographic data from 189 AIS patients with Lenke 1A and 2A curves enrolled in the MIMO Clinical Trial (NCT01792609). The model mimics experienced spine surgeons' decision-making for selecting the upper and the lower instrumented vertebrae (UIV, LIV), determining rod curvature, and predicting screw density based on the study's randomized allocation. Models were trained with data from 179 patients, utilizing tenfold cross-validation, and externally validated on 10 patients from a separate hospital and surgeons outside the training set. For UIV and LIV selection, accuracy within the top two predictions was used as a classification performance metric, ensuring that other clinically relevant alternatives were considered.
The NNML, which comprised 83 inputs and multiple hidden layers, led to significant gains over ST-NN and proved more robust during the internal validation (loss 6.2 vs. 9.3; p ≤ 0.01). It showed 82-95% and 80-100% accuracy for UIV and LIV predictions and 70-90% accuracy for predicting the rod curvatures ± 5°. The RMSE for the screw density and rod curvature predictions was 0.2-0.3 and 3.7-5.6°, respectively.
An NNML can better use the features of relevant AIS patients for mixed task prediction pertinent to PSF surgery planning than ST-NN. In addition, NNML was capable of mimicking experienced spine surgeons' decision-making process when designing the instrumentation.
后路脊柱内固定融合术(PSF)是重度青少年特发性脊柱侧凸(AIS)的金标准,但内固定策略差异很大,常常导致效果欠佳。深度学习在AIS手术规划中的潜力尚未得到充分探索。
本研究使用来自参加MIMO临床试验(NCT01792609)的189例Lenke 1A和2A曲线型AIS患者的术前临床和影像学数据,训练并验证了一个人工神经网络多任务学习模型(NNML)。该模型模仿经验丰富的脊柱外科医生基于研究的随机分配来选择上位和下位固定椎体(UIV、LIV)、确定棒的弯曲度以及预测螺钉密度的决策过程。模型使用来自179例患者的数据进行训练,采用十折交叉验证,并在来自另一家医院的10例患者以及训练集之外的外科医生处进行外部验证。对于UIV和LIV的选择,将前两个预测结果中的准确率用作分类性能指标,以确保考虑其他临床相关的替代方案。
包含83个输入和多个隐藏层的NNML相比ST-NN有显著提升,并且在内部验证期间表现得更加稳健(损失分别为6.2和9.3;p≤0.01)。其UIV和LIV预测的准确率分别为82%-95%和80%-100%,预测棒弯曲度±5°的准确率为70%-90%。螺钉密度和棒弯曲度预测的均方根误差分别为0.2-0.3和3.7-5.6°。
与ST-NN相比,NNML能够更好地利用相关AIS患者的特征进行与PSF手术规划相关的混合任务预测。此外,NNML在设计内固定时能够模仿经验丰富的脊柱外科医生的决策过程。