Suppr超能文献

S-腺苷甲硫氨酸代谢缓冲通过核泛素-蛋白酶体系统降低甘氨酸N-甲基转移酶的活性来调节。

S-adenosylmethionine metabolism buffering is regulated by a decrease in glycine N-methyltransferase via the nuclear ubiquitin-proteasome system.

作者信息

Kashio Soshiro, Miura Masayuki

机构信息

Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Department of Integrative Bioanalytics, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.

出版信息

Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2417821122. doi: 10.1073/pnas.2417821122. Epub 2025 Jun 24.

Abstract

Metabolic homeostasis is essential for survival; however, many studies have focused on the fluctuations of these factors. Furthermore, while metabolic homeostasis depends on the balance between the production and consumption of metabolites, there have been limited investigations into the mechanisms regulating their consumption. S-adenosylmethionine (SAM) metabolism has diverse functions, including methylation, polyamine biosynthesis, and transsulfuration, making its regulation and control crucial. Recent studies have revealed the feedback regulation of SAM production; however, the mechanisms governing its consumption are still poorly understood. In this study, we focused on the stability of SAM levels in the fat body (FB) of , which serves as a functional equivalent of the mammalian liver and adipose tissue, under conditions of SAM shortage, including nutrient deprivation. We found that glycine N-methyltransferase (Gnmt), a major SAM-consuming methyltransferase in the FB, decreased via the nuclear ubiquitin-proteasome system (UPS), along with the inhibition of SAM synthesis and starvation. The inhibition of Gnmt level reduction by suppression of the nuclear UPS causes starvation tolerance. Thus, the regulation of Gnmt levels through nuclear UPS-mediated reduction helps maintain SAM levels under SAM shortage conditions.

摘要

代谢稳态对生存至关重要;然而,许多研究集中在这些因素的波动上。此外,虽然代谢稳态取决于代谢物产生与消耗之间的平衡,但对调节其消耗机制的研究却很有限。S-腺苷甲硫氨酸(SAM)代谢具有多种功能,包括甲基化、多胺生物合成和转硫作用,因此其调节和控制至关重要。最近的研究揭示了SAM产生的反馈调节;然而,其消耗的调控机制仍知之甚少。在本研究中,我们聚焦于在SAM短缺条件下,包括营养剥夺时,作为哺乳动物肝脏和脂肪组织功能等效物的果蝇脂肪体(FB)中SAM水平的稳定性。我们发现,FB中主要消耗SAM的甲基转移酶甘氨酸N-甲基转移酶(Gnmt)通过核泛素-蛋白酶体系统(UPS)减少,同时伴随着SAM合成的抑制和饥饿。通过抑制核UPS来抑制Gnmt水平降低可导致饥饿耐受性。因此,通过核UPS介导的降低来调节Gnmt水平有助于在SAM短缺条件下维持SAM水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/12232644/2025449d81d5/pnas.2417821122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验