Suppr超能文献

使用Kaptive 3进行快速准确的抗原分型。

Fast and accurate antigen typing with Kaptive 3.

作者信息

Stanton Thomas David, Hetland Marit A K, Löhr Iren H, Holt Kathryn E, Wyres Kelly L

机构信息

Department of Infectious Diseases, Monash University, Melbourne, Australia.

Centre to Impact AMR, Monash University, Clayton, Australia.

出版信息

Microb Genom. 2025 Jun;11(6). doi: 10.1099/mgen.0.001428.

Abstract

Surface polysaccharides are common antigens in priority pathogens and therefore attractive targets for novel control strategies such as vaccines, monoclonal antibody and phage therapies. Distinct serotypes correspond to diverse polysaccharide structures that are encoded by distinct biosynthesis gene clusters; e.g. the species complex (KpSC) K- and O-loci encode the synthesis machinery for the capsule (K) and outer-lipopolysaccharides (O), respectively. We previously presented Kaptive and Kaptive 2, programmes to identify K- and O-loci directly from KpSC genome assemblies (later adapted for ), enabling sero-epidemiological analyses to guide vaccine and phage therapy development. However, for some KpSC genome collections, Kaptive (v≤2) was unable to type a high proportion of K-loci. Here, we identify the cause of this issue as assembly fragmentation and present a new version of Kaptive (v3) to circumvent this problem, reduce processing times and simplify output interpretation. We compared the performance of Kaptive v2 and Kaptive v3 for typing genome assemblies generated from subsampled Illumina read sets (decrements of 10× depth), for which a corresponding high-quality completed genome was also available to determine the 'true' loci (=549 KpSC, =198 . ). Both versions of Kaptive showed high rates of agreement to the matched true locus amongst 'typeable' locus calls (≥96% for ≥20× read depth), but Kaptive v3 was more sensitive, particularly for low-depth assemblies (at <40× depth, v3 ranged 0.85-1 vs v2 0.09-0.94) and/or typing KpSC K-loci (e.g. 0.97 vs 0.82 for non-subsampled assemblies). Overall, Kaptive v3 was also associated with a higher rate of optimal outcomes; i.e. loci matching those in the reference database were correctly typed, and genuine novel loci were reported as untypeable (73-98% for v3 vs 7-77% for v2 for KpSC K-loci). Kaptive v3 was >1 order of magnitude faster than Kaptive v2, making it easy to analyse thousands of assemblies on a desktop computer, facilitating broadly accessible serotyping that is both accurate and sensitive. The Kaptive v3 source code is freely available on GitHub (https://github.com/klebgenomics/Kaptive), and has been implemented in Kaptive Web (https://kaptive-web.erc.monash.edu/).

摘要

表面多糖是重点病原体中的常见抗原,因此是疫苗、单克隆抗体和噬菌体疗法等新型控制策略的有吸引力的靶点。不同的血清型对应于由不同生物合成基因簇编码的多种多糖结构;例如,肺炎克雷伯菌复合种(KpSC)的K和O位点分别编码荚膜(K)和外脂多糖(O)的合成机制。我们之前展示了Kaptive和Kaptive 2程序,用于直接从KpSC基因组组装中识别K和O位点(后来适用于其他物种),从而能够进行血清流行病学分析以指导疫苗和噬菌体疗法的开发。然而,对于一些KpSC基因组集合,Kaptive(v≤2)无法对很大比例的K位点进行分型。在这里,我们确定这个问题的原因是组装片段化,并提出了一个新版本的Kaptive(v3)来解决这个问题,减少处理时间并简化输出解释。我们比较了Kaptive v2和Kaptive v3对从下采样的Illumina读段集(深度递减10倍)生成的基因组组装进行分型的性能,对于这些读段集,还可以获得相应的高质量完整基因组来确定“真实”位点(=549个KpSC,=198个其他物种)。在“可分型”位点调用中,两个版本的Kaptive与匹配的真实位点的一致性率都很高(对于≥20倍读深度,≥96%),但Kaptive v3更敏感,特别是对于低深度组装(在<40倍深度时,v3范围为0.85 - 1,而v2为0.09 - 0.94)和/或对KpSC K位点进行分型(例如,对于非下采样组装,v3为0.97,v2为0.82)。总体而言,Kaptive v3还与更高的最佳结果率相关;即与参考数据库中位点匹配的位点被正确分型,真正的新位点被报告为无法分型(对于KpSC K位点,v3为73 - 98%,v2为7 - 77%)。Kaptive v3比Kaptive v2快超过1个数量级,使得在台式计算机上轻松分析数千个组装成为可能,便于进行广泛可用的准确且敏感的血清分型。Kaptive v3的源代码可在GitHub(https://github.com/klebgenomics/Kaptive)上免费获取,并已在Kaptive Web(https://kaptive-web.erc.monash.edu/)中实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7a/12188004/95886e0ee7dc/mgen-11-01428-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验