在基于运动想象的脑机接口中,通过考虑心跳诱发电位的影响来改善错误相关电位的单次试验检测。

Improving single-trial detection of error-related potentials by considering the effect of heartbeat-evoked potentials in a motor imagery-based brain-computer interface.

作者信息

Park Sangin, Ha Jihyeon, Kim Laehyun

机构信息

Next-generation Mechanical Design Laboratory, Korea University, Seoul, 02841, Republic of Korea.

Bionics Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.

出版信息

Comput Biol Med. 2025 Sep;195:110563. doi: 10.1016/j.compbiomed.2025.110563. Epub 2025 Jun 18.

Abstract

OBJECTIVE

This study aimed to determine the effect of heartbeat-evoked potentials (HEPs) on changes in the error-related potential (ErrP) epoch and classification performance in single trials, specifically distinguishing between correct and error conditions in a three-class motor imagery-based brain-computer interface.

METHODS

Eleven individuals participated in this study, with 10 participants assigned to the offline group and 10 to the real-time group. The experiment consisted of 360 motor imagery trials, involving both correct and erroneous feedback. The ErrP trial was categorized into three conditions based on whether the heartbeat was within the ErrP epoch time window or not: (1) including heartbeat trials (ErrP), (2) excluding heartbeat trials (ErrP), and (3) total trials (ErrP).

RESULTS

A small negativity was observed at approximately 200 ms, followed by a subsequent positivity at approximately 300 ms. The prominent amplitudes at approximately 200 and 300 ms in the ErrP condition notably differed from those in the ErrP and ErrP conditions, showing the highest classification accuracy. In the offline experiment dataset of 10 participants, the ErrP condition demonstrated the highest classification accuracy (0.89). This was higher by 0.07 and 0.11 compared to the ErrP (0.82) and ErrP (0.78) conditions, respectively. For real-time analysis, the novel ErrP paradigm proposed in this study achieved a classification accuracy of 0.89 for 10 participants, a 0.05 increase compared with that of the conventional ErrP paradigm.

CONCLUSION AND SIGNIFICANCE

These findings can contribute to obtaining pure or clear ErrP epochs associated with the target response and significantly improve classification performance.

摘要

目的

本研究旨在确定心跳诱发电位(HEPs)对单次试验中错误相关电位(ErrP)时段变化及分类性能的影响,具体是在基于三类运动想象的脑机接口中区分正确和错误条件。

方法

11名个体参与了本研究,其中10名参与者被分配到离线组,10名被分配到实时组。实验包括360次运动想象试验,涉及正确和错误反馈。ErrP试验根据心跳是否在ErrP时段时间窗口内分为三种条件:(1)包含心跳试验(ErrP),(2)排除心跳试验(ErrP),以及(3)总试验(ErrP)。

结果

在约200毫秒处观察到一个小的负电位,随后在约300毫秒处出现一个正电位。ErrP条件下约200和300毫秒处的显著振幅与ErrP和ErrP条件下的显著不同,显示出最高的分类准确率。在10名参与者的离线实验数据集中,ErrP条件显示出最高的分类准确率(0.89)。这分别比ErrP(0.82)和ErrP(0.78)条件高0.07和0.11。对于实时分析,本研究提出的新型ErrP范式在10名参与者中实现了0.89的分类准确率,比传统ErrP范式提高了0.05。

结论与意义

这些发现有助于获得与目标反应相关的纯净或清晰的ErrP时段,并显著提高分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索