Nalentzi Katerina, Gerogiannis Konstantinos, Bougias Haralabos, Stogiannos Nikolaos, Papavasileiou Periklis
Biomedical Sciences Department, Radiology-Radiotherapy Sector, University of West Attica, Athens, Greece.
Electrical Computer Engineering Department, Aristotle University of Thessaloniki, Thessaloniki, Greece.
J Med Imaging Radiat Sci. 2025 Jun 18;56(5):102008. doi: 10.1016/j.jmir.2025.102008.
INTRODUCTION/BACKGROUND: This study compares the classification accuracy of novel transformer-based deep learning models (ViT and BEiT) on brain MRIs of gliomas and meningiomas through a feature-driven approach. Meta's Segment Anything Model was used for semi-automatic segmentation, therefore proposing a total neural network-based workflow for this classification task.
ViT and BEiT models were finetuned to a publicly available brain MRI dataset. Gliomas/meningiomas cases (625/507) were used for training and 520 cases (260/260; gliomas/meningiomas) for testing. The extracted deep radiomic features from ViT and BEiT underwent normalization, dimensionality reduction based on the Pearson correlation coefficient (PCC), and feature selection using analysis of variance (ANOVA). A multi-layer perceptron (MLP) with 1 hidden layer, 100 units, rectified linear unit activation, and Adam optimizer was utilized. Hyperparameter tuning was performed via 5-fold cross-validation.
The ViT model achieved the highest AUC on the validation dataset using 7 features, yielding an AUC of 0.985 and accuracy of 0.952. On the independent testing dataset, the model exhibited an AUC of 0.962 and an accuracy of 0.904. The BEiT model yielded an AUC of 0.939 and an accuracy of 0.871 on the testing dataset.
This study demonstrates the effectiveness of transformer-based models, especially ViT, for glioma and meningioma classification, achieving high AUC scores and accuracy. However, the study is limited by the use of a single dataset, which may affect generalizability. Future work should focus on expanding datasets and further optimizing models to improve performance and applicability across different institutions.
This study introduces a feature-driven methodology for glioma and meningioma classification, showcasing advancements in the accuracy and model robustness of transformer-based models.
引言/背景:本研究通过一种基于特征的方法,比较了新型基于变压器的深度学习模型(ViT和BEiT)在胶质瘤和脑膜瘤脑MRI上的分类准确性。使用Meta的Segment Anything模型进行半自动分割,因此为该分类任务提出了一种基于全神经网络的工作流程。
将ViT和BEiT模型微调至一个公开可用的脑MRI数据集。胶质瘤/脑膜瘤病例(625/507)用于训练,520例(260/260;胶质瘤/脑膜瘤)用于测试。从ViT和BEiT中提取的深度放射组学特征进行归一化处理,基于皮尔逊相关系数(PCC)进行降维,并使用方差分析(ANOVA)进行特征选择。使用具有1个隐藏层、100个单元、整流线性单元激活和Adam优化器的多层感知器(MLP)。通过5折交叉验证进行超参数调整。
ViT模型使用7个特征在验证数据集上获得了最高的AUC,AUC为0.985,准确率为0.952。在独立测试数据集上,该模型的AUC为0.962,准确率为0.904。BEiT模型在测试数据集上的AUC为0.939,准确率为0.871。
本研究证明了基于变压器的模型,尤其是ViT,在胶质瘤和脑膜瘤分类中的有效性,实现了高AUC分数和准确率。然而,该研究受到使用单一数据集的限制,这可能会影响通用性。未来的工作应侧重于扩展数据集并进一步优化模型,以提高性能和在不同机构中的适用性。
本研究介绍了一种用于胶质瘤和脑膜瘤分类的基于特征的方法,展示了基于变压器的模型在准确性和模型稳健性方面的进展。