Banerjee Tathagat, Chhabra Prachi, Kumar Manoj, Kumar Abhay, Abhishek Kumar, Shah Mohd Asif
Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, Bihar, India.
Department of Information Technology, JSS Academy of Technical Education, Noida, India.
Sci Rep. 2025 Aug 6;15(1):28669. doi: 10.1038/s41598-025-11574-x.
Brain tumors are a significant challenge to human health as they impair the proper functioning of the brain and the general quality of life, thus requiring clinical intervention through early and accurate diagnosis. Although current state-of-the-art deep learning methods have achieved remarkable progress, there is still a gap in the representation learning of tumor-specific spatial characteristics and the robustness of the classification model on heterogeneous data. In this paper, we introduce a novel Pyramidal Attention-Based bi-partitioned T Network (PABT-Net) that combines the hierarchical pyramidal attention mechanism and T-block based bi-partitioned feature extraction, and a self-convolutional dilated neural classifier as the final task. Such an architecture increases the discriminability of the space and decreases the false forecasting by adaptively focusing on informative areas in brain MRI images. The model was thoroughly tested on three benchmark datasets, Figshare Brain Tumor Dataset, Sartaj Brain MRI Dataset, and Br35H Brain Tumor Dataset, containing 7023 images labeled in four tumor classes: glioma, meningioma, no tumor, and pituitary tumor. It attained an overall classification accuracy of 99.12%, a mean cross-validation accuracy of 98.77%, a Jaccard similarity index of 0.986, and a Cohen's Kappa value of 0.987, indicating superb generalization and clinical stability. The model's effectiveness is also confirmed by tumor-wise classification accuracies: 96.75%, 98.46%, and 99.57% in glioma, meningioma, and pituitary tumors, respectively. Comparative experiments with the state-of-the-art models, including VGG19, MobileNet, and NASNet, were carried out, and ablation studies proved the effectiveness of NASNet incorporation. To capture more prominent spatial-temporal patterns, we investigated hybrid networks, including NASNet with ANN, CNN, LSTM, and CNN-LSTM variants. The framework implements a strict nine-fold cross-validation procedure. It integrates a broad range of measures in its evaluation, including precision, recall, specificity, F1-score, AUC, confusion matrices, and the ROC analysis, consistent across distributions. In general, the PABT-Net model has high potential to be a clinically deployable, interpretable, state-of-the-art automated brain tumor classification model.
脑肿瘤对人类健康构成重大挑战,因为它们会损害大脑的正常功能和总体生活质量,因此需要通过早期准确诊断进行临床干预。尽管当前最先进的深度学习方法已取得显著进展,但在肿瘤特异性空间特征的表征学习以及分类模型在异构数据上的稳健性方面仍存在差距。在本文中,我们介绍了一种新颖的基于金字塔注意力的二分T网络(PABT-Net),它结合了分层金字塔注意力机制和基于T块的二分特征提取,以及一个自卷积扩张神经分类器作为最终任务。这种架构通过自适应地聚焦于脑MRI图像中的信息区域,提高了空间的可辨别性并减少了错误预测。该模型在三个基准数据集上进行了全面测试,即Figshare脑肿瘤数据集、Sartaj脑MRI数据集和Br35H脑肿瘤数据集,这些数据集包含7023张标记为四个肿瘤类别的图像:胶质瘤、脑膜瘤、无肿瘤和垂体瘤。它获得了99.12%的总体分类准确率、98.77%的平均交叉验证准确率、0.986的杰卡德相似性指数和0.987的科恩卡帕值,表明具有卓越的泛化能力和临床稳定性。该模型在不同肿瘤类型上的分类准确率也证实了其有效性:胶质瘤、脑膜瘤和垂体瘤的准确率分别为96.75%、98.46%和99.57%。我们与包括VGG19、MobileNet和NASNet在内的最先进模型进行了对比实验,消融研究证明了并入NASNet的有效性。为了捕捉更突出的时空模式,我们研究了混合网络,包括带有ANN、CNN、LSTM和CNN-LSTM变体的NASNet。该框架实施了严格的九折交叉验证程序。它在评估中纳入了广泛的指标,包括精度、召回率、特异性、F1分数、AUC、混淆矩阵和ROC分析,这些指标在不同分布中保持一致。总体而言,PABT-Net模型具有很高的潜力,有望成为一种可临床部署、可解释的、最先进的自动脑肿瘤分类模型。
2025-1
Cochrane Database Syst Rev. 2022-3-2
Health Technol Assess. 2006-9
Clin Orthop Relat Res. 2024-9-1
Bioengineering (Basel). 2024-12-23
NPJ Precis Oncol. 2025-1-3
Bioengineering (Basel). 2023-12-31
Bioengineering (Basel). 2023-4-14
Life (Basel). 2023-1-28