文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于脑肿瘤分类的基于金字塔注意力的T网络:对临床可靠且可靠的人工智能混合方法的迁移学习方法的综合分析。

Pyramidal attention-based T network for brain tumor classification: a comprehensive analysis of transfer learning approaches for clinically reliable and reliable AI hybrid approaches.

作者信息

Banerjee Tathagat, Chhabra Prachi, Kumar Manoj, Kumar Abhay, Abhishek Kumar, Shah Mohd Asif

机构信息

Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, Bihar, India.

Department of Information Technology, JSS Academy of Technical Education, Noida, India.

出版信息

Sci Rep. 2025 Aug 6;15(1):28669. doi: 10.1038/s41598-025-11574-x.


DOI:10.1038/s41598-025-11574-x
PMID:40764518
Abstract

Brain tumors are a significant challenge to human health as they impair the proper functioning of the brain and the general quality of life, thus requiring clinical intervention through early and accurate diagnosis. Although current state-of-the-art deep learning methods have achieved remarkable progress, there is still a gap in the representation learning of tumor-specific spatial characteristics and the robustness of the classification model on heterogeneous data. In this paper, we introduce a novel Pyramidal Attention-Based bi-partitioned T Network (PABT-Net) that combines the hierarchical pyramidal attention mechanism and T-block based bi-partitioned feature extraction, and a self-convolutional dilated neural classifier as the final task. Such an architecture increases the discriminability of the space and decreases the false forecasting by adaptively focusing on informative areas in brain MRI images. The model was thoroughly tested on three benchmark datasets, Figshare Brain Tumor Dataset, Sartaj Brain MRI Dataset, and Br35H Brain Tumor Dataset, containing 7023 images labeled in four tumor classes: glioma, meningioma, no tumor, and pituitary tumor. It attained an overall classification accuracy of 99.12%, a mean cross-validation accuracy of 98.77%, a Jaccard similarity index of 0.986, and a Cohen's Kappa value of 0.987, indicating superb generalization and clinical stability. The model's effectiveness is also confirmed by tumor-wise classification accuracies: 96.75%, 98.46%, and 99.57% in glioma, meningioma, and pituitary tumors, respectively. Comparative experiments with the state-of-the-art models, including VGG19, MobileNet, and NASNet, were carried out, and ablation studies proved the effectiveness of NASNet incorporation. To capture more prominent spatial-temporal patterns, we investigated hybrid networks, including NASNet with ANN, CNN, LSTM, and CNN-LSTM variants. The framework implements a strict nine-fold cross-validation procedure. It integrates a broad range of measures in its evaluation, including precision, recall, specificity, F1-score, AUC, confusion matrices, and the ROC analysis, consistent across distributions. In general, the PABT-Net model has high potential to be a clinically deployable, interpretable, state-of-the-art automated brain tumor classification model.

摘要

脑肿瘤对人类健康构成重大挑战,因为它们会损害大脑的正常功能和总体生活质量,因此需要通过早期准确诊断进行临床干预。尽管当前最先进的深度学习方法已取得显著进展,但在肿瘤特异性空间特征的表征学习以及分类模型在异构数据上的稳健性方面仍存在差距。在本文中,我们介绍了一种新颖的基于金字塔注意力的二分T网络(PABT-Net),它结合了分层金字塔注意力机制和基于T块的二分特征提取,以及一个自卷积扩张神经分类器作为最终任务。这种架构通过自适应地聚焦于脑MRI图像中的信息区域,提高了空间的可辨别性并减少了错误预测。该模型在三个基准数据集上进行了全面测试,即Figshare脑肿瘤数据集、Sartaj脑MRI数据集和Br35H脑肿瘤数据集,这些数据集包含7023张标记为四个肿瘤类别的图像:胶质瘤、脑膜瘤、无肿瘤和垂体瘤。它获得了99.12%的总体分类准确率、98.77%的平均交叉验证准确率、0.986的杰卡德相似性指数和0.987的科恩卡帕值,表明具有卓越的泛化能力和临床稳定性。该模型在不同肿瘤类型上的分类准确率也证实了其有效性:胶质瘤、脑膜瘤和垂体瘤的准确率分别为96.75%、98.46%和99.57%。我们与包括VGG19、MobileNet和NASNet在内的最先进模型进行了对比实验,消融研究证明了并入NASNet的有效性。为了捕捉更突出的时空模式,我们研究了混合网络,包括带有ANN、CNN、LSTM和CNN-LSTM变体的NASNet。该框架实施了严格的九折交叉验证程序。它在评估中纳入了广泛的指标,包括精度、召回率、特异性、F1分数、AUC、混淆矩阵和ROC分析,这些指标在不同分布中保持一致。总体而言,PABT-Net模型具有很高的潜力,有望成为一种可临床部署、可解释的、最先进的自动脑肿瘤分类模型。

相似文献

[1]
Pyramidal attention-based T network for brain tumor classification: a comprehensive analysis of transfer learning approaches for clinically reliable and reliable AI hybrid approaches.

Sci Rep. 2025-8-6

[2]
Hybrid transfer learning and self-attention framework for robust MRI-based brain tumor classification.

Sci Rep. 2025-7-1

[3]
A medical image classification method based on self-regularized adversarial learning.

Med Phys. 2024-11

[4]
Short-Term Memory Impairment

2025-1

[5]
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.

Cochrane Database Syst Rev. 2022-3-2

[6]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[7]
Synergizing advanced algorithm of explainable artificial intelligence with hybrid model for enhanced brain tumor detection in healthcare.

Sci Rep. 2025-7-1

[8]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[9]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[10]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

本文引用的文献

[1]
Towards automated and reliable lung cancer detection in histopathological images using DY-FSPAN: A feature-summarized pyramidal attention network for explainable AI.

Comput Biol Chem. 2025-10

[2]
Brain tumor segmentation using multi-scale attention U-Net with EfficientNetB4 encoder for enhanced MRI analysis.

Sci Rep. 2025-3-22

[3]
CICADA (UCX): A novel approach for automated breast cancer classification through aggressiveness delineation.

Comput Biol Chem. 2025-4

[4]
Dynamic Focus on Tumor Boundaries: A Lightweight U-Net for MRI Brain Tumor Segmentation.

Bioengineering (Basel). 2024-12-23

[5]
A review of deep learning for brain tumor analysis in MRI.

NPJ Precis Oncol. 2025-1-3

[6]
Segmentation of Thoracic Organs through Distributed Extraction of Visual Feature Patterns Utilizing Resio-Inception U-Net and Deep Cluster Recognition Techniques.

Curr Gene Ther. 2024

[7]
Optimizing Skin Cancer Survival Prediction with Ensemble Techniques.

Bioengineering (Basel). 2023-12-31

[8]
CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016-2020.

Neuro Oncol. 2023-10-4

[9]
WBM-DLNets: Wrapper-Based Metaheuristic Deep Learning Networks Feature Optimization for Enhancing Brain Tumor Detection.

Bioengineering (Basel). 2023-4-14

[10]
Multiple Brain Tumor Classification with Dense CNN Architecture Using Brain MRI Images.

Life (Basel). 2023-1-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索