Suppr超能文献

基于张量多尺度二分图融合的可扩展单遍多视图聚类

Scalable one-pass multi-view clustering with tensorized multiscale bipartite graphs fusion.

作者信息

Wang Fei, Lu Gui-Fu

机构信息

School of Computer and Information, Anhui Polytechnic University, Wuhu, Anhui, China.

School of Computer and Information, Anhui Polytechnic University, Wuhu, Anhui, China.

出版信息

Neural Netw. 2025 Oct;190:107669. doi: 10.1016/j.neunet.2025.107669. Epub 2025 Jun 14.

Abstract

In the existing multi-view clustering task, anchor-based methods are widely used for large-scale data processing to reduce computational complexity and achieve satisfactory results. However, most existing anchor-based algorithms generate a single-scale bipartite graph for each view, limiting a more accurate representation of the original data. Moreover, these algorithms typically require further clustering processing, and the contribution of each view to the final clustering result is static, lacking dynamic adjustment based on the data characteristics. To address the above issues, we introduce an innovative multi-view clustering method called Scalable One-pass Multi-View Clustering with Tensorized Multiscale Bipartite Graphs Fusion (SOMVC/TMBGF). Specifically, we initially generate multiple scales of bipartite graphs for each view and adaptively fuse them to obtain a partition matrix, thereby fully leveraging the structural information of the original data for a more accurate representation. Subsequently, we combine the partition matrices from each view into a tensor constrained with Tensor Schatten p-norm, capturing the higher-order correlations and complementary information between views. Finally, to enhance clustering performance, we integrate partition matrix learning and clustering into a unified framework, dynamically adjusting the contribution of each view's partition matrix through weighted spectral rotation to obtain the final clustering result. Experimental results show that SOMVC/TMBGF outperforms existing methods significantly in both clustering performance and computational efficiency, demonstrating its advantage in handling large-scale multi-view data.

摘要

在现有的多视图聚类任务中,基于锚点的方法被广泛用于大规模数据处理,以降低计算复杂度并取得令人满意的结果。然而,大多数现有的基于锚点的算法为每个视图生成一个单尺度二分图,限制了对原始数据更准确的表示。此外,这些算法通常需要进一步的聚类处理,并且每个视图对最终聚类结果的贡献是静态的,缺乏基于数据特征的动态调整。为了解决上述问题,我们引入了一种创新的多视图聚类方法,称为具有张量化多尺度二分图融合的可扩展单通道多视图聚类(SOMVC/TMBGF)。具体来说,我们首先为每个视图生成多个尺度的二分图,并对它们进行自适应融合以获得一个划分矩阵,从而充分利用原始数据的结构信息进行更准确的表示。随后,我们将每个视图的划分矩阵组合成一个受张量Schatten p范数约束的张量,捕捉视图之间的高阶相关性和互补信息。最后,为了提高聚类性能,我们将划分矩阵学习和聚类集成到一个统一的框架中,通过加权谱旋转动态调整每个视图划分矩阵的贡献,以获得最终的聚类结果。实验结果表明,SOMVC/TMBGF在聚类性能和计算效率方面均显著优于现有方法,证明了其在处理大规模多视图数据方面的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验