Suppr超能文献

非洲的抗菌药物耐药性:对2016年至2019年来自14个国家的数据进行的回顾性分析。

Antimicrobial resistance in Africa: A retrospective analysis of data from 14 countries, 2016-2019.

作者信息

Osena Gilbert, Kapoor Geetanjali, Kalanxhi Erta, Ouassa Timothée, Shumba Edwin, Brar Sehr, Alimi Yewande, Moreira Manuel, Matu Martin, Sow Abdourahmane, Klein Eili, Ondoa Pascale, Laxminarayan Ramanan

机构信息

One Health Trust, Washington DC and Bengaluru, Bengaluru, India.

Department of Infectious Diseases, Institute for Biomedicine, University of Gothenburg, Gothenburg, Sweden.

出版信息

PLoS Med. 2025 Jun 24;22(6):e1004638. doi: 10.1371/journal.pmed.1004638. eCollection 2025 Jun.

Abstract

BACKGROUND

Antimicrobial resistance (AMR) is a major global health issue that exacerbates the burden of infectious diseases and healthcare costs. However, the scarcity of national-level AMR data in African countries hampers our understanding of its scale and contributing factors in the region. To gain insights into AMR prevalence in Africa, we collected and analyzed retrospective AMR data from 14 countries.

METHODS AND FINDINGS

We estimated bacterial AMR prevalence, defined as the proportion of resistant human isolates tested from antimicrobial susceptibility (AST) data collected retrospectively for 2016-2019 from 205 laboratories across 14 African countries. We generated 95% confidence intervals (CIs) for aggregated AMR estimates to account for data quality disparities across countries; the median data quality score was 73.1%, ranging from 56.4% to 80.8%. We assessed 819,584 culture records covering 9,266 pathogen-drug combinations, of which 187,832 (22.9%) were positive cultures with AST results. The most frequently cultured specimens were urine (32.0%) and purulent samples (28.1%), and the most frequently isolated pathogens were Escherichia coli (22.2%) and Staphylococcus aureus (15.0%). Aggregated AMR estimates did not change significantly across the years studied (p > 0.337); however, there were significant variations in AMR prevalence estimates in culture-positive samples across countries, regions, patient departments (inpatient/outpatient), and specimen sources (p < 0.05). Male sex (adjusted odds ratio [aOR] 1.15; 95% CI [1.09,1.21]; p < 0.0001), ages above 65 (aOR 1.28; 95% CI [1.16-1.41]; p < 0.0001), and inpatient department (aOR 1.24; 95% CI [1.13-1.35]; p < 0.0001) were associated with higher AMR prevalence among culture-positive samples. The lack of routine testing, as reflected in the low data volume from most contributing laboratories, and the absence of patient clinical information, represent significant limitations of this study.

CONCLUSION

Analysis of the largest retrospective AMR dataset in Africa indicates high variability in AMR prevalence across countries, coupled with differences in AMR testing capacities, data quality, and AMR estimates. Gaps in AST practices and inadequate digital infrastructures for data collection and reporting represent barriers to estimating the true AMR burden in the region. These barriers warrant large-scale investments to expand healthcare access and strengthen bacteriology laboratory capacities.

摘要

背景

抗菌药物耐药性(AMR)是一个重大的全球健康问题,它加剧了传染病负担和医疗成本。然而,非洲国家国家级AMR数据的匮乏阻碍了我们对该地区AMR规模及其影响因素的了解。为了深入了解非洲的AMR流行情况,我们收集并分析了来自14个国家的回顾性AMR数据。

方法与结果

我们估计了细菌AMR流行率,其定义为从2016年至2019年在14个非洲国家的205个实验室回顾性收集的抗菌药物敏感性(AST)数据中检测出的耐药人类分离株的比例。我们为汇总的AMR估计值生成了95%置信区间(CI),以考虑各国之间的数据质量差异;数据质量得分中位数为73.1%,范围从56.4%至80.8%。我们评估了819,584份培养记录,涵盖9,266种病原体 - 药物组合,其中187,832份(22.9%)为有AST结果的阳性培养物。最常培养的标本是尿液(32.0%)和脓性样本(28.1%),最常分离出的病原体是大肠埃希菌(22.2%)和金黄色葡萄球菌(15.0%)。在研究的各年份中,汇总的AMR估计值没有显著变化(p > 0.337);然而,在不同国家、地区、患者科室(住院/门诊)和标本来源的培养阳性样本中,AMR流行率估计值存在显著差异(p < 0.05)。男性(调整优势比[aOR] 1.15;95% CI [1.09, 1.21];p < 0.0001)、65岁以上(aOR 1.28;95% CI [1.16 - 1.41];p < 0.0001)以及住院科室(aOR 1.24;95% CI [1.13 - 1.35];p < 0.0001)与培养阳性样本中较高的AMR流行率相关。大多数提供数据的实验室数据量较低所反映出的缺乏常规检测,以及患者临床信息的缺失,是本研究的重大局限性。

结论

对非洲最大规模的回顾性AMR数据集的分析表明,各国之间AMR流行率存在高度变异性,同时在AMR检测能力、数据质量和AMR估计方面存在差异。AST实践中的差距以及数据收集和报告的数字基础设施不足是估计该地区真实AMR负担的障碍。这些障碍需要大规模投资以扩大医疗服务可及性并加强细菌学实验室能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c75c/12186946/54660bee70a5/pmed.1004638.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验