Yang Shaohua, Wang Yueyang, Gong Yaqiong
School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China.
School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China.
J Colloid Interface Sci. 2025 Dec;699(Pt 2):138255. doi: 10.1016/j.jcis.2025.138255. Epub 2025 Jun 20.
Engineering single atoms anchored on nanoparticles with maximal atom utilization efficiency and tunable coordination character holds a great promise for applications in water splitting and energy storage. Herein, Ruthenium (Ru) single atoms embedded in nickel subsulfide‑nickel sulfide (NiS-NiS) nanoparticles supported on carbon nanotubes (CNTs) are fabricated via economical approach and utilized as chemical catalysts towards oxygen evolution reaction (OER). The unique architecture of Ru@NiS-NiS/CNTs provides substantial surface area exposure, facilitating electron transport and revealing numerous active sites. In particular, Ru@NiS-NiS/CNTs demonstrates remarkable OER catalytic capability, with a reduced overpotential of 221 mV at 10 mA cm and decreased Tafel slope of 74.1 mV dec in alkaline electrolyte, outstripping commercially available Ir/C catalyst. The atomically dispersed Ru sites were identified and the Ru single atoms confined within the NiS-NiS lattice of it to induce Ru-S-Ni bonding, serving as catalytic centers to elevate the inherent activity towards OER. Furthermore, the electronic characteristic of NiS-NiS was modulated with the doping of isolated Ru atoms. Density functional theory (DFT) calculations have illustrated the presence of atomically dispersed Ru into NiS-NiS strengthens both chemical adsorption and OER catalytic activities. This study broadens significant insights into the field of single-atom catalysts and offers valuable perspectives for designing advanced materials in sustainable energy applications.
将单原子锚定在纳米颗粒上,使其具有最大的原子利用效率和可调节的配位特性,这在水分解和能量存储应用中具有巨大潜力。在此,通过经济的方法制备了嵌入在碳纳米管(CNT)负载的硫化镍-硫化亚镍(NiS-NiS)纳米颗粒中的钌(Ru)单原子,并将其用作析氧反应(OER)的化学催化剂。Ru@NiS-NiS/CNT的独特结构提供了大量的表面积暴露,促进了电子传输并揭示了众多活性位点。特别是,Ru@NiS-NiS/CNT表现出卓越的OER催化能力,在碱性电解质中,在10 mA cm时过电位降低了221 mV,塔菲尔斜率降低至74.1 mV dec,超过了市售的Ir/C催化剂。确定了原子分散的Ru位点,并且Ru单原子被限制在其NiS-NiS晶格内以诱导Ru-S-Ni键合,作为催化中心提高了对OER的固有活性。此外,通过孤立Ru原子的掺杂调节了NiS-NiS的电子特性。密度泛函理论(DFT)计算表明,原子分散的Ru进入NiS-NiS增强了化学吸附和OER催化活性。这项研究拓宽了对单原子催化剂领域的重要见解,并为可持续能源应用中先进材料的设计提供了有价值的观点。