Wang Cui, Xu Xinping, Luo Shuai, Luo Man, Li Sha, Si Jianhong
Nanjing Jiangbei Hospital, Affiliated Nanjing Jiangbei Hospital of Xinglin College, Nantong University, Jiangsu, China.
Huai'an No. 3 People's Hospital, Huaian Second Clinical College of Xuzhou Medical University, Jiangsu, China.
Ecotoxicol Environ Saf. 2025 Jun 23;302:118569. doi: 10.1016/j.ecoenv.2025.118569.
Diabetes Mellitus (DM) is a global health concern with rising prevalence, and its link to PFAS exposure remains unclear. No machine learning (ML) models have yet been developed to predict DM based on PFAS exposure.
We analyzed data from 10471 participants in National Health and Nutrition Examination Survey (NHANES, 2003-2018). Twelve ML models were compared, with LightGBM showing the best performance (AUC = 0.84, sensitivity = 0.83, accuracy = 73 %). Variable importance, Partial Dependence Analysis (PDA), SHapley Additive exPlanations (SHAP), and LOWESS smoothing were applied to assess predictor contributions and nonlinear effects. We developed a web-based calculator using Gradio to translate our findings into a clinical risk assessment tool.
PFOA was identified as the strongest predictor and was negatively associated with DM risk. PFOS, PFNA, and MPAH showed positive associations, while PFDE had a slightly negative association. A PFOA threshold of 2.48 ng/ML was identified, below which DM risk was markedly reduced. At low PFOA levels, PFOS and PFNA exhibited mild synergistic effects, but these diminished at higher concentrations. SHAP analyses confirmed PFAS dominant protective contribution, and nonlinear patterns were observed for multiple PFAS. The deployed calculator provides clinicians with an accessible tool to assess individual DM risk based on patient profiles including PFAS exposure.
This study provides novel ML-based insights into the associations between PFAS and DM. These findings warrant prospective validation and may inform environmental health strategies for diabetes prevention.
糖尿病(DM)是一个全球关注的健康问题,其患病率不断上升,并且其与全氟和多氟烷基物质(PFAS)暴露之间的联系仍不清楚。尚未开发出基于PFAS暴露来预测糖尿病的机器学习(ML)模型。
我们分析了来自国家健康与营养检查调查(NHANES,2003 - 2018年)的10471名参与者的数据。比较了12种ML模型,其中LightGBM表现最佳(曲线下面积[AUC] = 0.84,灵敏度 = 0.83,准确率 = 73%)。应用变量重要性、偏倚依赖分析(PDA)、夏普利值附加解释(SHAP)和局部加权散点平滑估计(LOWESS)来评估预测因素的贡献和非线性效应。我们使用Gradio开发了一个基于网络的计算器,将我们的研究结果转化为临床风险评估工具。
全氟辛酸(PFOA)被确定为最强的预测因素,并且与糖尿病风险呈负相关。全氟辛烷磺酸(PFOS)、全氟萘酸(PFNA)和单甲基全氟辛烷磺酸(MPAH)呈正相关,而全氟二烷基醚(PFDE)呈轻微负相关。确定了PFOA阈值为2.48 ng/毫升,低于该阈值糖尿病风险显著降低。在低PFOA水平时,PFOS和PFNA表现出轻微的协同效应,但在较高浓度时这些效应减弱。SHAP分析证实了PFAS的主要保护作用,并且观察到多种PFAS的非线性模式。所部署的计算器为临床医生提供了一个可访问的工具,以根据包括PFAS暴露在内的患者概况评估个体糖尿病风险。
本研究为PFAS与糖尿病之间的关联提供了基于机器学习的新见解。这些发现需要前瞻性验证,并可能为糖尿病预防的环境卫生策略提供信息。