Fayyaz Amir, Waqas Muhammad, Asghar Haroon, Ahmed Rizwan, Liaqat Usman, Naseem Kashif, Baig Muhammad Aslam
National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, 45320, Pakistan; Atomic and Molecular Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
Department of Mining and Geological Engineering, The University of Arizona, Tucson, AZ, 85719, USA.
Talanta. 2026 Jan 1;296:128463. doi: 10.1016/j.talanta.2025.128463. Epub 2025 Jun 19.
This study presents the application of laser-induced breakdown spectroscopy (LIBS) for analyzing various copper-bearing critical ores with significant Cu concentrations. LIBS detected Cu as a base element, along with other minor elements including Al, C, Fe, Mg, Ni, Si, and Zn, under optimized experimental conditions that include 80 ± 0.3 mJ laser energy, 2 μs delay time, ∼500 μm spot size, and a 45° angle between the collecting lens and the sample surface. The energy-dispersive X-ray technique was employed to determine the elemental concentrations and spatial distributions within the sample, based on K, K, and L characteristic lines. Quantitative analysis in LIBS is challenging due to matrix effects on line intensities, often requiring matrix-matched standards; however, the multielemental quality of LIBS spectra enables the detection of matrix types for accurate classification. In this contribution, we applied an unsupervised principal component analysis (PCA) on pre-processed LIBS data to reduce dimensionality and visualize clusters, showing that the first three principal components (PCs) account for 97.9 % of the total variance (PC1: 69.8 %, PC2: 20.3 %, PC3: 7.8 %). Elliptical PCA clustering with a 96 % confidence interval was achieved using SIMCA. A supervised partial least squares-discrimination analysis model is used to identify the variables that contribute most to classification. The model yields cumulative X and Y variances of 97.86 % and 99.96 %, respectively, with an R range of 0.83-0.99 across the first 6 factors. Furthermore, LIBS 2D mapping is carried out using Cu spectral lines at 510.6 (P → D), 515.3 (D → P), and 521.8 nm (D → P), and Zn at 481.1 nm (S → P), over 50 and 200 scans to visualize the element spatial distribution. Mapping is cross-validated using Pearson's correlation covering a 50 × 50 mm area, achieving ∼150 μm spatial resolution and an average root mean PRESS of ∼94 % with a high correlation of ∼0.989. The results show the efficiency of LIBS integrated with multivariate methods for pattern recognition, classification, and spatial analysis in the exploration of copper ores.
本研究介绍了激光诱导击穿光谱法(LIBS)在分析各种含铜量较高的关键矿石中的应用。在优化的实验条件下,包括80±0.3 mJ的激光能量、2 μs的延迟时间、约500 μm的光斑尺寸以及收集透镜与样品表面之间45°的夹角,LIBS将铜作为基础元素进行检测,同时还检测到了其他微量元素,包括铝、碳、铁、镁、镍、硅和锌。采用能量色散X射线技术,基于K、K和L特征线来确定样品中的元素浓度和空间分布。由于基体对线强度的影响,LIBS中的定量分析具有挑战性,通常需要基体匹配的标准样品;然而,LIBS光谱的多元素特性能够检测基体类型以进行准确分类。在本研究中,我们对预处理后的LIBS数据应用了无监督主成分分析(PCA)以降低维度并可视化聚类,结果表明前三个主成分(PC)占总方差的97.9%(PC1:69.8%,PC2:20.3%,PC3:7.8%)。使用SIMCA实现了具有96%置信区间的椭圆PCA聚类。使用监督偏最小二乘判别分析模型来识别对分类贡献最大的变量。该模型的累积X和Y方差分别为97.86%和99.96%,在前6个因子上的R范围为0.83 - 0.99。此外,使用510.6(P→D)、515.3(D→P)和521.8 nm(D→P)处的铜光谱线以及481.1 nm(S→P)处的锌光谱线进行LIBS二维映射,扫描次数分别为50次和200次,以可视化元素的空间分布。使用皮尔逊相关性对覆盖50×50 mm区域的映射进行交叉验证,实现了约150 μm的空间分辨率,平均预测残差平方和(PRESS)约为94%,相关性高达约0.989。结果表明,LIBS与多变量方法相结合在铜矿石勘探中的模式识别、分类和空间分析方面具有高效性。