Suppr超能文献

基于确定性学习的一类非线性采样数据系统的快速执行器容错控制

Fast actuator fault-tolerant control for a class of nonlinear sampled-data systems via deterministic learning.

作者信息

Zeng Yu, Chen Tianrui, Zhang Fukai, Wang Cong

机构信息

School of Control Science and Engineering, Shandong University, Jinan, 250061, PR China.

出版信息

ISA Trans. 2025 Oct;165:1-14. doi: 10.1016/j.isatra.2025.05.049. Epub 2025 Jun 23.

Abstract

In this paper, we investigate the fast fault-tolerant control (FTC) problem based on deterministic learning approach (DLA) for a class of nonlinear sampled-data systems with actuator faults, which consist of two stages: incipient faults with small magnitudes and faults with larger magnitudes. First, a learning controller and a learning identifier are constructed. Based on DLA and the exponential stability of a class of linear time-varying (LTV) discrete-time systems, the control knowledge and the diagnosis knowledge of the actuator faults are obtained. Second, a set of controllers and a set of diagnosis estimators are constructed based on the learnt control and diagnosis knowledge. When an incipient actuator fault occurs, fast fault detection and isolation (FDI) can be achieved using the diagnosis estimators. Then, the pattern-based FTC scheme is implemented to improve the control performance. When the small fault grows to a larger one, the rapid FDI and FTC are implemented again, providing fast responses to the occurred larger fault. The advantages of the proposed method are that: (i) a simple adaptive learning controller with the filtering technique is designed, in which the exponential convergence of the tracking error and parameter estimation errors can be achieved simultaneously; (ii) the sensitivity to small actuator faults is enhanced, and the fast FTC to larger actuator faults is achieved by utilizing the learnt knowledge. Simulation results are also included to illustrate the effectiveness of these schemes.

摘要

在本文中,我们针对一类具有执行器故障的非线性采样数据系统,基于确定性学习方法(DLA)研究快速容错控制(FTC)问题,该系统的故障分为两个阶段:小幅度的初期故障和大幅度的故障。首先,构建一个学习控制器和一个学习标识符。基于DLA以及一类线性时变(LTV)离散时间系统的指数稳定性,获取执行器故障的控制知识和诊断知识。其次,基于所学的控制和诊断知识构建一组控制器和一组诊断估计器。当出现初期执行器故障时,可使用诊断估计器实现快速故障检测与隔离(FDI)。然后,实施基于模式的FTC方案以提高控制性能。当小故障发展为大故障时,再次实施快速FDI和FTC,对出现的大故障提供快速响应。所提方法的优点在于:(i)设计了一种带有滤波技术的简单自适应学习控制器,能够同时实现跟踪误差和参数估计误差的指数收敛;(ii)增强了对小执行器故障的敏感性,并通过利用所学知识实现对大执行器故障的快速FTC。还给出了仿真结果以说明这些方案的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验