Yang Yuling, Zheng Bowen, Zou Bin, Liu Renyi, Yang Rongqiang, Chen Qifeng, Guo Yongfei, Yu Shuiquan, Chen Biwei
Department of Medical Imaging, Zhongshan Hospital of Traditional Chinese Medicine, Guangdong 528400, China (Y.Y., R.L., R.Y., Q.C., Y.G., S.Y.).
Department of Diagnostic Imaging, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China (B.Z.).
Acad Radiol. 2025 Jun 23. doi: 10.1016/j.acra.2025.05.059.
To explore the value of machine learning models based on MRI radiomics and automated habitat analysis in predicting bone metastasis and high-grade pathological Gleason scores in prostate cancer.
This retrospective study enrolled 214 patients with pathologically diagnosed prostate cancer from May 2013 to January 2025, including 93 cases with bone metastasis and 159 cases with high-grade Gleason scores. Clinical, pathological and MRI data were collected. An nnUNet model automatically segmented the prostate in MRI scans. K-means clustering identified subregions within the entire prostate in T2-FS images. Senior radiologists manually segmented regions of interest (ROIs) in prostate lesions. Radiomics features were extracted from these habitat subregions and lesion ROIs. These features combined with clinical features were utilized to build multiple machine learning classifiers to predict bone metastasis and high-grade Gleason scores while a K-means clustering method was applied to obtain habitat subregions within the whole prostate. Finally, the models underwent interpretable analysis based on feature importance.
The nnUNet model achieved a mean Dice coefficient of 0.970 for segmentation. Habitat analysis using 2 clusters yielded the highest average silhouette coefficient (0.57). Machine learning models based on a combination of lesion radiomics, habitat radiomics, and clinical features achieved the best performance in both prediction tasks. The Extra Trees Classifier achieved the highest AUC (0.900) for predicting bone metastasis, while the CatBoost Classifier performed best (AUC 0.895) for predicting high-grade Gleason scores. The interpretability analysis of the optimal models showed that the PSA clinical feature was crucial for predictions, while both habitat radiomics and lesion radiomics also played important roles.
The study proposed an automated prostate habitat analysis for prostate cancer, enabling a comprehensive analysis of tumor heterogeneity. The machine learning models developed achieved excellent performance in predicting the risk of bone metastasis and high-grade Gleason scores in prostate cancer. This approach overcomes the limitations of manual feature extraction, and the inadequate analysis of heterogeneity often encountered in traditional radiomics, thereby improving model performance.
探讨基于MRI影像组学和自动栖息地分析的机器学习模型在预测前列腺癌骨转移和高分级病理Gleason评分方面的价值。
这项回顾性研究纳入了2013年5月至2025年1月间214例经病理诊断的前列腺癌患者,其中93例有骨转移,159例为高分级Gleason评分。收集了临床、病理和MRI数据。一个nnUNet模型在MRI扫描中自动分割前列腺。K均值聚类在T2-FS图像中识别整个前列腺内的子区域。资深放射科医生手动分割前列腺病变中的感兴趣区域(ROI)。从这些栖息地子区域和病变ROI中提取影像组学特征。这些特征与临床特征相结合,用于构建多个机器学习分类器,以预测骨转移和高分级Gleason评分,同时应用K均值聚类方法获得整个前列腺内的栖息地子区域。最后,基于特征重要性对模型进行可解释性分析。
nnUNet模型分割的平均Dice系数为0.970。使用2个聚类的栖息地分析产生了最高的平均轮廓系数(0.57)。基于病变影像组学、栖息地影像组学和临床特征组合建立的机器学习模型在两项预测任务中均表现最佳。Extra Trees分类器在预测骨转移方面的AUC最高(0.900),而CatBoost分类器在预测高分级Gleason评分方面表现最佳(AUC 0.895)。对最优模型的可解释性分析表明,PSA临床特征对预测至关重要,而栖息地影像组学和病变影像组学也发挥了重要作用。
该研究提出了一种针对前列腺癌的自动前列腺栖息地分析方法,能够对肿瘤异质性进行全面分析。所开发的机器学习模型在预测前列腺癌骨转移风险和高分级Gleason评分方面表现出色。这种方法克服了手动特征提取的局限性以及传统影像组学中经常遇到的异质性分析不足的问题,从而提高了模型性能。