Tanriverdi Selim, Cruz Javier, Habibi Shahriar, Sych Taras, Costa Martim, Mårtensson Gustaf, Görgens André, Andaloussi Samir El, Brandt Luca, Tammisola Outi, Sezgin Erdinc, Russom Aman
Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, 171 65, Sweden.
Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, 171 77, Sweden.
Small. 2025 Aug;21(33):e2503369. doi: 10.1002/smll.202503369. Epub 2025 Jun 25.
Nanoscale biological particles, such as lipoproteins (10-80 nm) or extracellular vesicles (30-200 nm), play pivotal roles in health and disease, including conditions like cardiovascular disorders and cancer. Their effective analysis is crucial for applications in diagnostics, quality control, and nanomedicine development. While elasto-inertial focusing offers a powerful method to manipulate particles without external fields, achieving consistent focusing of nanoparticles (<500 nm) has remained a challenge. In this study, elasto-inertial focusing of nanoparticles as small as 25 nm is experimentally demonstrated using straight high-aspect-ratio microchannels in a sheathless flow. Systematic investigations reveal the influence of channel width, particle size, viscoelastic concentration, and flow rate on focusing behavior. Additionally, through numerical simulations and experimental validation, insights are provided into particle migration dynamics and viscoelastic forces governing nanoparticle focusing. Finally, biological particles, including liposomes (90-140 nm), extracellular vesicles (100 nm), and lipoproteins (10-25 nm) is successfully focused, under optimized conditions, showcasing potential applications in medical diagnostics and targeted drug delivery. These findings mark a significant advancement toward size-based high-resolution particle separation, with implications for biomedicine and environmental sciences.
纳米级生物颗粒,如脂蛋白(10 - 80纳米)或细胞外囊泡(30 - 200纳米),在健康和疾病中发挥着关键作用,包括心血管疾病和癌症等病症。它们的有效分析对于诊断、质量控制和纳米医学发展中的应用至关重要。虽然弹性惯性聚焦提供了一种在无外部场的情况下操纵颗粒的强大方法,但实现小于500纳米的纳米颗粒的一致聚焦仍然是一个挑战。在本研究中,使用无鞘流中的直高纵横比微通道通过实验证明了小至25纳米的纳米颗粒的弹性惯性聚焦。系统研究揭示了通道宽度、颗粒大小、粘弹性浓度和流速对聚焦行为的影响。此外,通过数值模拟和实验验证,深入了解了控制纳米颗粒聚焦的颗粒迁移动力学和粘弹性力。最后,在优化条件下成功聚焦了包括脂质体(90 - 140纳米)、细胞外囊泡(100纳米)和脂蛋白(10 - 25纳米)在内的生物颗粒,展示了在医学诊断和靶向药物递送中的潜在应用。这些发现标志着在基于尺寸的高分辨率颗粒分离方面取得了重大进展,对生物医学和环境科学具有重要意义。