Suppr超能文献

回声网格:用于富集环境微塑料的高通量声阱

EchoGrid: High-Throughput Acoustic Trapping for Enrichment of Environmental Microplastics.

作者信息

Costa Martim, Hammarström Björn, van der Geer Liselotte, Tanriverdi Selim, Joensson Haakan N, Wiklund Martin, Russom Aman

机构信息

KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, 171 65 Solna, Sweden.

KTH Royal Institute of Technology, Department of Applied Physics, Science for Life Laboratory, 171 65 Solna, Sweden.

出版信息

Anal Chem. 2024 Jun 11;96(23):9493-9502. doi: 10.1021/acs.analchem.4c00933. Epub 2024 May 25.

Abstract

The health hazards of micro- and nanoplastic contaminants in drinking water has recently emerged as an area of concern to policy makers and industry. Plastic contaminants range in size from micro- (5 mm to 1 μm) to nanoplastics (<1 μm). Microfluidics provides many tools for particle manipulation at the microscale, particularly in diagnostics and biomedicine, but has in general a limited capacity to process large volumes. Drinking water and environmental samples with low-level contamination of microplastics require processing of deciliter to liter sample volumes to achieve statistically relevant particle counts. Here, we introduce the EchoGrid, an acoustofluidics device for high throughput continuous flow particle enrichment into a robust array of particle clusters. The EchoGrid takes advantage of highly efficient particle capture through the integration of a micropatterned transducer for surface displacement-based acoustic trapping in a glass and polymer microchannel. Silica seed particles were used as anchor particles to improve capture performance at low particle concentrations and high flow rates. The device was able to maintain the silica grids at a flow rate of 50 mL/min. In terms of enrichment, the device is able to double the final pellet's microplastic concentration every 78 s for 23 μm particles and every 51 s for 10 μm particles at a flow rate of 5 mL/min. In conclusion, we demonstrate the usefulness of the EchoGrid by capturing microplastics in challenging conditions, such as large sample volumes with low microparticle concentrations, without sacrificing the potential of integration with downstream analysis for environmental monitoring.

摘要

饮用水中微塑料和纳米塑料污染物对健康的危害最近已成为政策制定者和行业关注的领域。塑料污染物的尺寸范围从微米级(5毫米至1微米)到纳米塑料(<1微米)。微流控技术提供了许多用于微尺度下颗粒操控的工具,特别是在诊断和生物医学领域,但一般来说处理大量样品的能力有限。含有低水平微塑料污染的饮用水和环境样品需要处理分升至升的样品体积,以获得具有统计学意义的颗粒计数。在此,我们介绍EchoGrid,一种用于高通量连续流颗粒富集的声流控装置,可将颗粒富集到一系列坚固的颗粒簇中。EchoGrid通过在玻璃和聚合物微通道中集成用于基于表面位移的声阱捕获的微图案化换能器,利用高效的颗粒捕获。二氧化硅种子颗粒用作锚定颗粒,以提高在低颗粒浓度和高流速下的捕获性能。该装置能够在50毫升/分钟的流速下保持二氧化硅网格。在富集方面,该装置在5毫升/分钟流速下,对于23微米颗粒每78秒可使最终沉淀的微塑料浓度翻倍,对于10微米颗粒每51秒可使其翻倍。总之,我们通过在具有挑战性的条件下捕获微塑料,如低微颗粒浓度的大量样品,证明了EchoGrid的实用性,同时又不牺牲与用于环境监测的下游分析集成的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/093b/11170556/2dd5c2536143/ac4c00933_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验