Pieczulewski Naomi, Smith Kathleen T, Efaw Corey M, Singh Arjan, Gorsak Cameron A, Buontempo Joshua T, Wensel Jesse, Azizie Kathy, Gann Katie, Thompson Michael O, Schlom Darrell G, Rana Farhan, Nair Hari P, Hues Steven M, Graugnard Elton, Davis Paul H, Jena Debdeep, Xing Huili Grace, Muller David A
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA.
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA.
APL Mater. 2025 Jun;13(6):061122. doi: 10.1063/5.0276786.
Preserving a contamination-free metal-semiconductor interface in -GaO is critical to achieve consistently low resistance ( 1 Ω-mm) ohmic contacts. Here, we report a scanning transmission electron microscopy study on the variation in Ti/Au ohmic contact quality to (010) -GaO in a conventional lift-off vs a metal-first process. We observe a thin ∼1 nm carbon barrier between the Ti and GaO in a non-conductive contact fabricated by a conventional lift-off process, which we attribute to photoresist residue, not previously detected by x-ray photoelectron spectroscopy due to the thinness and patchy coverage of the carbon layer, as well as roughness of the GaO surface. This thin carbon barrier is confirmed by electron energy loss spectroscopy and atomic force microscopy-infrared spectroscopy. We believe that the presence of the thin and patchy carbon layer leads to the highly inconsistent contact behavior in previous reports on non-alloyed contacts. Adventitious carbon is also observed in a conductive ohmic contact metal-first processing on an as-grown sample. We find that a five minute active oxygen descum is sufficient to remove this carbon on as-grown samples, further improving the ohmic behavior and reducing the contact resistance R to 0.06 Ω-mm. We also show that an hour long UV-ozone treatment of the GaO surface can eliminate carbon residue from the lift-off processing, resulting in a low R of 0.05 Ω-mm.
在β-Ga₂O₃中保持无污染的金属-半导体界面对于实现始终如一的低电阻(<1Ω·mm)欧姆接触至关重要。在此,我们报告了一项扫描透射电子显微镜研究,该研究针对传统剥离工艺与金属先沉积工艺中Ti/Au欧姆接触与(010)β-Ga₂O₃接触质量的变化情况。我们观察到,在通过传统剥离工艺制造的非导电接触中,Ti与Ga₂O₃之间存在一层约1nm厚的碳阻挡层,我们将其归因于光刻胶残留,由于碳层厚度薄且覆盖不连续,以及Ga₂O₃表面粗糙度,此前X射线光电子能谱未检测到这一情况。通过电子能量损失谱和原子力显微镜-红外光谱证实了这一薄碳阻挡层的存在。我们认为,这种薄且不连续的碳层的存在导致了先前关于非合金接触的报告中接触行为高度不一致。在对生长态样品进行的导电欧姆接触金属先沉积工艺中也观察到了外来碳。我们发现,五分钟的活性氧去胶处理足以去除生长态样品上的这种碳,进一步改善欧姆行为并将接触电阻R降低至0.06Ω·mm。我们还表明,对Ga₂O₃表面进行一小时的紫外臭氧处理可以消除剥离工艺中产生的碳残留,从而得到0.05Ω·mm的低R值。