Wang Xi, Qi Yiting, Zhang Xin, Liu Fang, Li Jia
Department of Nursing, Zhuhai Campus of Zunyi Medical University, Guangdong, China.
Department of Ultrasound Imaging, Zhuhai People's Hospital, Zhuhai, Guangdong, China.
Front Endocrinol (Lausanne). 2025 Jun 10;16:1570811. doi: 10.3389/fendo.2025.1570811. eCollection 2025.
This meta-analysis aims to evaluate the diagnostic performance of ultrasound (US)-based artificial intelligence (AI) in assessing cervical lymph node metastasis (CLNM) in patients with papillary thyroid carcinoma (PTC).
A comprehensive literature search was conducted in PubMed, Embase, Web of Science, and the Cochrane Library to identify relevant studies published up to November 19, 2024. Studies focused on the diagnostic performance of AI in the detection of CLNM of PTC were included. A bivariate random-effects model was used to calculate the pooled sensitivity and specificity, both with 95% confidence intervals (CI). The I statistic was used to assess heterogeneity among studies.
Among the 593 studies identified, 27 studies were included (involving over 23,170 patients or images). For the internal validation set, the pooled sensitivity, specificity, and AUC for detecting CLNM of PTC were 0.80 (95% CI: 0.75-0.84), 0.83 (95% CI: 0.80-0.87), and 0.89 (95% CI: 0.86-0.91), respectively. For the external validation set, the pooled sensitivity, specificity, and AUC were 0.77 (95% CI: 0.49-0.92), 0.82 (95% CI: 0.75-0.88), and 0.86 (95% CI: 0.83-0.89), respectively. For US physicians, the overall sensitivity, specificity, and AUC for detecting CLNM were 0.51 (95% CI: 0.38-0.64), 0.84 (95% CI: 0.76-0.89), and 0.77 (95% CI: 0.73-0.81), respectively.
US-based AI demonstrates higher diagnostic performance than US physicians. However, the high heterogeneity among studies and the limited number of externally validated studies constrain the generalizability of these findings, and further research on external validation datasets is needed to confirm the results and assess their practical clinical value.
https://www.crd.york.ac.uk/PROSPERO/view/CRD42024625725, identifier CRD42024625725.
本荟萃分析旨在评估基于超声(US)的人工智能(AI)在评估甲状腺乳头状癌(PTC)患者颈部淋巴结转移(CLNM)中的诊断性能。
在PubMed、Embase、Web of Science和Cochrane图书馆进行了全面的文献检索,以识别截至2024年11月19日发表的相关研究。纳入了关注AI在PTC的CLNM检测中的诊断性能的研究。采用双变量随机效应模型计算合并敏感性和特异性,两者均带有95%置信区间(CI)。I统计量用于评估研究间的异质性。
在识别出的593项研究中,纳入了27项研究(涉及超过23170名患者或图像)。对于内部验证集,检测PTC的CLNM的合并敏感性、特异性和AUC分别为0.80(95%CI:0.75 - 0.84)、0.83(95%CI:0.80 - 0.87)和0.89(95%CI:0.86 - 0.91)。对于外部验证集,合并敏感性、特异性和AUC分别为0.77(95%CI:0.49 - 0.92)、0.82(95%CI:0.75 - 0.88)和0.86(95%CI:0.83 - 0.89)。对于超声医师,检测CLNM的总体敏感性、特异性和AUC分别为0.51(95%CI:0.38 - 0.64)、0.84(95%CI:0.76 - 0.89)和0.77(95%CI:0.73 - 0.81)。
基于超声的AI显示出比超声医师更高的诊断性能。然而,研究间的高异质性和外部验证研究数量有限限制了这些结果的可推广性,需要对外部验证数据集进行进一步研究以确认结果并评估其实际临床价值。
https://www.crd.york.ac.uk/PROSPERO/view/CRD42024625725标识符CRD42024625725 。