Suppr超能文献

深度学习在甲状腺乳头状癌超声图像中侧颈淋巴结自动分割和分类的应用。

Application of deep-learning to the automatic segmentation and classification of lateral lymph nodes on ultrasound images of papillary thyroid carcinoma.

机构信息

Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, China.

Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, China; Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China.

出版信息

Asian J Surg. 2024 Sep;47(9):3892-3898. doi: 10.1016/j.asjsur.2024.02.140. Epub 2024 Mar 6.

Abstract

PURPOSE

It is crucial to preoperatively diagnose lateral cervical lymph node (LN) metastases (LNMs) in papillary thyroid carcinoma (PTC) patients. This study aims to develop deep-learning models for the automatic segmentation and classification of LNM on original ultrasound images.

METHODS

This study included 1000 lateral cervical LN ultrasound images (consisting of 512 benign and 558 metastatic LNs) collected from 728 patients at the Chongqing General Hospital between March 2022 and July 2023. Three instance segmentation models (MaskRCNN, SOLO and Mask2Former) were constructed to segment and classify ultrasound images of lateral cervical LNs by recognizing each object individually and in a pixel-by-pixel manner. The segmentation and classification results of the three models were compared with an experienced sonographer in the test set.

RESULTS

Upon completion of a 200-epoch learning cycle, the loss among the three unique models became negligible. To evaluate the performance of the deep-learning models, the intersection over union threshold was set at 0.75. The mean average precision scores for MaskRCNN, SOLO and Mask2Former were 88.8%, 86.7% and 89.5%, respectively. The segmentation accuracies of the MaskRCNN, SOLO, Mask2Former models and sonographer were 85.6%, 88.0%, 89.5% and 82.3%, respectively. The classification AUCs of the MaskRCNN, SOLO, Mask2Former models and sonographer were 0.886, 0.869, 0.90.2 and 0.852 in the test set, respectively.

CONCLUSIONS

The deep learning models could automatically segment and classify lateral cervical LNs with an AUC of 0.92. This approach may serve as a promising tool to assist sonographers in diagnosing lateral cervical LNMs among patients with PTC.

摘要

目的

术前诊断甲状腺乳头状癌(PTC)患者颈侧淋巴结(LN)转移(LNM)至关重要。本研究旨在开发深度学习模型,用于对原始超声图像上的 LNM 进行自动分割和分类。

方法

本研究纳入了 2022 年 3 月至 2023 年 7 月期间,重庆医科大学附属第一医院的 728 例患者的 1000 例颈侧 LN 超声图像(包括 512 例良性 LN 和 558 例转移性 LN)。构建了 3 种实例分割模型(MaskRCNN、SOLO 和 Mask2Former),通过逐个识别和逐像素识别来分割和分类颈侧 LN 超声图像。在测试集中,将这三个模型的分割和分类结果与有经验的超声医生进行比较。

结果

在完成 200 个周期的学习后,三个独特模型的损失变得可以忽略不计。为了评估深度学习模型的性能,将交并比阈值设置为 0.75。MaskRCNN、SOLO 和 Mask2Former 的平均精度分数分别为 88.8%、86.7%和 89.5%。MaskRCNN、SOLO、Mask2Former 模型和超声医生的分割准确率分别为 85.6%、88.0%、89.5%和 82.3%。在测试集中,MaskRCNN、SOLO、Mask2Former 模型和超声医生的分类 AUC 分别为 0.886、0.869、0.902 和 0.852。

结论

深度学习模型可以自动分割和分类颈侧 LN,AUC 为 0.92。该方法可能成为辅助超声医生诊断 PTC 患者颈侧 LNM 的一种有前途的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验