Ding Zijuan, Liu Ke, Grunwald Sabine, Smith Pete, Ciais Philippe, Wang Bin, Wadoux Alexandre M J-C, Ferreira Carla, Karunaratne Senani, Shurpali Narasinha, Yin Xiaogang, Roberts Dale, Madgett Oli, Duncan Sam, Zhou Meixue, Liu Zhangyong, Harrison Matthew Tom
Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, TAS, 7249, Australia.
College of Agriculture, Yangtze University, Hubei Province, 434023, China.
Adv Sci (Weinh). 2025 Aug;12(31):e04152. doi: 10.1002/advs.202504152. Epub 2025 Jun 25.
Measurement, monitoring, and prediction of soil organic carbon (SOC) are fundamental to supporting climate change mitigation efforts and promoting sustainable agricultural management practices. This review discusses recent advances in methodologies and technologies for SOC quantification, including remote sensing (RS), proximal soil sensing (PSS), artificial intelligence (AI) for SOC modelling (in particular, machine learning (ML) and deep learning (DL)), biogeochemical modelling, and data fusion. Integrating data from RS, PSS, and other sensors usually leads to good SOC predictions, provided it is supported by careful calibration, validation across diverse pedo-climatic and land management, and the use of data processing and modelling frameworks. We also found that the accuracy of AI-driven SOC prediction improves when RS covariates are included. Although DL often outperforms classical ML, there is no single best AI algorithm. By incorporating simulated outputs from biogeochemical model as additional training data for AI, causal relationships in SOC turnover can be incorporated into empirical modelling, while maintaining predictive accuracy. In conclusion, SOC prediction can be enhanced through 1) integrating sensing technologies, 2) applying AI, notably DL, 3) addressing biogeochemical model limitations (assumptions, parameterization, structure), 4) expanding SOC data availability, 5) improving mathematical representation of microbial influences on SOC, and 6) strengthening interdisciplinary cooperation between soil scientists and model developers.
土壤有机碳(SOC)的测量、监测和预测对于支持气候变化缓解努力以及促进可持续农业管理实践至关重要。本综述讨论了SOC量化方法和技术的最新进展,包括遥感(RS)、近地土壤传感(PSS)、用于SOC建模的人工智能(AI)(特别是机器学习(ML)和深度学习(DL))、生物地球化学建模以及数据融合。整合来自RS、PSS和其他传感器的数据通常会带来良好的SOC预测,前提是要有仔细的校准、跨不同土壤气候和土地管理的验证以及数据处理和建模框架的支持。我们还发现,当纳入RS协变量时,人工智能驱动的SOC预测准确性会提高。尽管DL通常优于经典ML,但没有单一的最佳人工智能算法。通过将生物地球化学模型的模拟输出作为人工智能的额外训练数据,可以将SOC周转中的因果关系纳入经验建模,同时保持预测准确性。总之,可以通过以下方式提高SOC预测:1)整合传感技术;2)应用人工智能,特别是DL;3)解决生物地球化学模型的局限性(假设、参数化、结构);4)扩大SOC数据的可获取性;5)改进微生物对SOC影响的数学表示;6)加强土壤科学家与模型开发者之间的跨学科合作。