Groizard Thomas, Mandal Souvik, Gourlaouen Christophe, Daniel Chantal
Laboratoire de Chimie Quantique Université de Strasbourg CNRS UMR7177, Institut Le Bel 4 Rue Blaise Pascal, 67000 Strasbourg, France.
Phys Chem Chem Phys. 2025 Jul 10;27(27):14432-14443. doi: 10.1039/d5cp01450f.
The electronic and (chiro-) optical properties of [Pt(pCpy)(acac)] 1 and [Pt(pCpz)(acac)] 2 (pCpy = 2-[2,2]-paracyclophane-4-yl)pyridyl; pCpz = 1-[2,2]-paracyclophane-4-yl)pyrazolyl; acac = dimethyl-substituted acetylacetonato), representative of phosphorescent chiral cyclometalated Pt(II) complexes, are investigated by means of density functional theory (DFT) and its time-dependent extension so-called TD-DFT, including spin-orbit coupling (SOC) effects. The computed absorption, phosphorescence and circularly polarized luminescence (CPL) spectra are compared to the available experimental spectra, and analysed on the basis of spin-orbit interactions and electronic excited state sub-levels. The major role of the SOC is established and deciphered for both complexes. Spin-orbit sub-levels of the low-lying triplet manifold not only perturb the absorption spectra by a 60-70 nm shift to the red, but entirely control the phosphorescence and CPL activities, in terms of intensity and composition. It is shown that the substitution of a pyridyl ligand in 1 with a pyrazolyl in 2 has dramatic consequences on the photophysics of these "case-study" molecules. Indeed, the character and the energetics of the lowest triplet states participating in the emission properties are drastically affected by this change of ligands. Whereas [Pt(pCpy)(acac)] 1 can be considered as an "easy case", both experimentally and theoretically, [Pt(pCpz)(acac)] 2 represents a challenge computationally due to the presence of two nearly degenerate emissive triplet states. The correlation between the structural/electronic properties of the excited states contributing to the spectra is discussed as well as the early time (<1 ps) photophysics simulated by non-adiabatic quantum dynamics for the two complexes.
通过密度泛函理论(DFT)及其含时扩展(即所谓的TD-DFT),包括自旋-轨道耦合(SOC)效应,研究了[Pt(pCpy)(acac)] 1和[Pt(pCpz)(acac)] 2(pCpy = 2-[2,2]-对环芳烷-4-基)吡啶基;pCpz = 1-[2,2]-对环芳烷-4-基)吡唑基;acac = 二甲基取代乙酰丙酮)的电子和(手性)光学性质,这两种化合物是磷光手性环金属化Pt(II)配合物的代表。将计算得到的吸收光谱、磷光光谱和圆偏振发光(CPL)光谱与现有的实验光谱进行比较,并基于自旋-轨道相互作用和电子激发态子能级进行分析。确定并解释了SOC对这两种配合物的主要作用。低能三重态流形的自旋-轨道子能级不仅使吸收光谱红移60 - 70 nm从而使其发生扰动,而且在强度和组成方面完全控制了磷光和CPL活性。结果表明,将1中的吡啶基配体替换为2中的吡唑基对这些“案例研究”分子的光物理性质产生了巨大影响。实际上,参与发射性质的最低三重态的特征和能量受到配体这种变化的显著影响。虽然[Pt(pCpy)(acac)] 1在实验和理论上都可被视为一个“简单案例”,但由于存在两个近简并的发射三重态,[Pt(pCpz)(acac)] 2在计算上代表了一个挑战。讨论了对光谱有贡献的激发态的结构/电子性质之间的相关性,以及通过非绝热量子动力学对这两种配合物模拟的早期时间(<1 ps)光物理过程。