Wan Zhongxiang, Kong Weiji, Tang Yan, Ma Feixiang, Ji Yusi, Peng Yang, Zhu Ziqiang
College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
Microlens Technologies Co., Ltd., Beijing 100080, China.
Plant Physiol. 2025 Jul 3;198(3). doi: 10.1093/plphys/kiaf275.
Phenotype observations are common methodologies in plant biology studies, ranging from recording growth parameters to flowering dates. Identifying mutants or varieties with different phenotypes greatly advances our understanding of regulatory mechanisms in plant growth and development. Over the past 2 decades, naked-eye-based observations and manual measurements using ImageJ software have been leading approaches for recording phenotypes. However, these low-efficiency and error-prone methods have met difficulties in large-scale pipelines. Although some high-throughput imaging platforms have been commercialized, it remains challenging to efficiently, conveniently, accurately, and automatically analyze data generated by these platforms. To address this issue, we designed an automatic phenotype analysis tool. We trained a YOLOv11 (You Only Look Once version 11) model to locate Arabidopsis thaliana seedlings grown on petri dishes and developed a high-accuracy semantic segmentation model based on Swin Transformer and kernel update head, achieving a segmentation accuracy of 83.56% mIoU. By postprocessing the segmentation masks, we automated the analysis of 5 representative seedling phenotypes: hypocotyl length, root length, root gravitropic bending angle, petiole length, and cotyledon opening rate. Compared with manual recording, our tool demonstrated high accuracy across all 5 phenotypes, offering a reliable and efficient solution for phenotypic analysis in plant research. Our automatic tool enables high-throughput phenotyping and will shift the traditional paradigm of phenotype recording.
表型观察是植物生物学研究中的常见方法,范围从记录生长参数到开花日期。识别具有不同表型的突变体或品种极大地推进了我们对植物生长发育调控机制的理解。在过去20年里,基于肉眼的观察以及使用ImageJ软件进行手动测量一直是记录表型的主要方法。然而,这些低效率且容易出错的方法在大规模流程中遇到了困难。尽管一些高通量成像平台已经商业化,但高效、便捷、准确且自动地分析这些平台产生的数据仍然具有挑战性。为了解决这个问题,我们设计了一种自动表型分析工具。我们训练了一个YOLOv11(你只看一次版本11)模型来定位在培养皿上生长的拟南芥幼苗,并基于Swin Transformer和内核更新头开发了一个高精度语义分割模型,实现了83.56%的平均交并比分割精度。通过对分割掩码进行后处理,我们实现了对5种代表性幼苗表型的自动化分析:下胚轴长度、根长度、根向重力弯曲角度、叶柄长度和子叶张开率。与手动记录相比,我们的工具在所有5种表型上都表现出了高精度,为植物研究中的表型分析提供了可靠且高效的解决方案。我们的自动工具实现了高通量表型分析,并将改变传统的表型记录模式。