Milhomem Pilati Rodrigues Bruno, Janssen Luis, da Silva Leonardo Assis, Acacio Suzane Suliane Vitorino Gomes, Magalhães Mariana Tigano, Ribeiro Bergmann Morais
Cell Biology Department, Universidade de Brasília, Brasília, Brazil.
J Virol. 2025 Jun 25:e0214824. doi: 10.1128/jvi.02148-24.
Baculoviruses are insect-specific viruses with large, double-stranded DNA genomes classified into four genera. Alphabaculoviruses, which infect lepidoptera, are further divided into group I (G1-α) and group II (G2-α). The GP64 protein, essential for cell attachment and viral entry in G1-α baculoviruses, is thought to have originated through horizontal gene transfer (HGT) from thogotoviruses (family ). This study investigates the functional substitution of GP64 by thogotovirus fusion proteins. Through RNA-seq data mining, we identified a novel thogotovirus, Melitaea didyma thogotovirus 1 (MediTHOV-1), in lepidopteran hosts. Phylodynamic analysis of G1-α baculovirus and thogotovirus glycoproteins suggests that the HGT event occurred during the Mesozoic era. To test functional substitution, we constructed recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV) carrying either the envelope fusion protein (EFP) genes from MediTHOV-1 or Apis thogotovirus 1 (ATHOV-1), while deleted for its native gene. Our results show that, while the MediTHOV-1 glycoprotein failed to rescue AcMNPV infectivity, the ATHOV-1 fusion protein (EFP) partially restored infectivity, albeit with reduced efficiency. Cryo-electron microscopy revealed lower incorporation of ATHOV-1 EFP into viral envelopes compared to GP64. The recombinant AcMNPV carrying ATHOV-1 EFP (Ac-ATHOVGPgp64Δ) displayed delayed replication kinetics and lower viral titers. Interestingly, ATHOV-1 EFP significantly enhanced baculovirus entry and gene transduction in mosquito cells. These findings provide experimental support for the HGT hypothesis, demonstrating the functional incorporation of a thogotovirus glycoprotein into a baculovirus. This study sheds light on the evolutionary relationship between baculovirus GP64 and glycoproteins, offering insights into viral evolution and potential biotechnological applications in gene delivery and protein expression.IMPORTANCEBaculoviruses are widely utilized for the biological control of insect pests and as versatile biotechnological tools, with their effectiveness largely dependent on the activity of their envelope fusion proteins (EFPs). Thogotoviruses, in contrast, are emerging vector-borne pathogens of significant concern. In this study, we present the first successful functional substitution of the baculovirus GP64 protein with a thogotovirus EFP, alongside the identification of what appears to be a lepidopteran-associated thogotovirus, Melitaea didyma thogothovirus 1. Our work provides functional and phylogenetic insights into the evolutionary relationship between these distantly related viral groups, particularly the hypothesized horizontal gene transfer event that gave rise to baculoviral gene. These findings offer a deeper understanding of the determinants underlying the adaptation of baculoviral glycoproteins to novel hosts. Furthermore, the discovery of novel viral genes highlights promising opportunities for biotechnological advancements, including the development of enhanced baculovirus-based gene delivery systems and tools for protein expression.
杆状病毒是昆虫特异性病毒,具有大型双链DNA基因组,分为四个属。感染鳞翅目的甲型杆状病毒进一步分为I组(G1-α)和II组(G2-α)。GP64蛋白对G1-α杆状病毒的细胞附着和病毒进入至关重要,被认为是通过水平基因转移(HGT)从丘脑病毒(科)起源的。本研究调查了丘脑病毒融合蛋白对GP64的功能替代。通过RNA测序数据挖掘,我们在鳞翅目宿主中鉴定出一种新型丘脑病毒,美眼蛱蝶丘脑病毒1(MediTHOV-1)。对G1-α杆状病毒和丘脑病毒糖蛋白的系统动力学分析表明,水平基因转移事件发生在中生代。为了测试功能替代,我们构建了携带来自MediTHOV-1或蜜蜂丘脑病毒1(ATHOV-1)包膜融合蛋白(EFP)基因的重组苜蓿银纹夜蛾多核衣壳核型多角体病毒(AcMNPV),同时删除了其天然基因。我们的结果表明,虽然MediTHOV-1糖蛋白未能挽救AcMNPV的感染性,但ATHOV-1融合蛋白(EFP)部分恢复了感染性,尽管效率有所降低。冷冻电子显微镜显示,与GP64相比,ATHOV-1 EFP在病毒包膜中的掺入率较低。携带ATHOV-1 EFP的重组AcMNPV(Ac-ATHOVGPgp64Δ)显示出延迟的复制动力学和较低的病毒滴度。有趣的是,ATHOV-1 EFP显著增强了杆状病毒在蚊细胞中的进入和基因转导。这些发现为水平基因转移假说提供了实验支持,证明了丘脑病毒糖蛋白在杆状病毒中的功能整合。本研究揭示了杆状病毒GP64与糖蛋白之间的进化关系,为病毒进化以及基因传递和蛋白质表达中的潜在生物技术应用提供了见解。重要性杆状病毒被广泛用于害虫的生物防治和作为多功能生物技术工具,其有效性在很大程度上取决于其包膜融合蛋白(EFPs)的活性。相比之下,丘脑病毒是令人高度关注的新兴媒介传播病原体。在本研究中,我们首次成功地用丘脑病毒EFP对杆状病毒GP64蛋白进行了功能替代,同时鉴定出一种似乎与鳞翅目相关的丘脑病毒,美眼蛱蝶丘脑病毒1。我们的工作为这些远缘病毒群体之间的进化关系提供了功能和系统发育方面的见解,特别是关于导致杆状病毒基因的假定水平基因转移事件。这些发现有助于更深入地理解杆状病毒糖蛋白适应新宿主的潜在决定因素。此外,新病毒基因的发现为生物技术进步带来了有希望的机会,包括开发基于杆状病毒的增强型基因传递系统和蛋白质表达工具。