Suppr超能文献

儿童终末拔管后一小时死亡:2009 - 2021年多中心队列中预测撤除生命维持治疗后心脏死亡的机器学习模型验证

Death One Hour After Terminal Extubation in Children: Validation of a Machine Learning Model to Predict Cardiac Death After Withdrawal of Life-Sustaining Treatment in a Multicenter Cohort, 2009-2021.

作者信息

Winter Meredith C, Zhou Alice X, Laksana Eugene, Aczon Melissa D, Ledbetter David R, Avesar Michael, Burkiewicz Kimberly, Chandnani Harsha K, Fainberg Nina, Hsu Stephanie, McCrory Michael C, Morrow Katie R, Noguchi Anna, O'Brien Caitlin E, Ojha Apoorva, Pringle Charlene, Ross Patrick A, Shah Jui, Shah Sareen, Shpaner Leonid, Siegel Linda B, Tripathi Sandeep, Wetzel Randall C

机构信息

Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA.

Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA.

出版信息

Pediatr Crit Care Med. 2025 Aug 1;26(8):e997-e1008. doi: 10.1097/PCC.0000000000003772. Epub 2025 Jun 25.

Abstract

OBJECTIVES

In the PICU, predicting death within 1 hour after terminal extubation (TE) is valuable in augmenting family counseling and in identifying suitable candidates for organ donation after circulatory determination of death (DCDD). The objective of this study was to train and validate a machine learning model to predict death within 1 hour after TE.

DESIGN

The Death One Hour After Terminal Extubation (DONATE) database was generated using multicenter retrospective data from 2009 to 2021. Data covering demographics, clinical features, vital signs, laboratory values, ventilator settings, medications, and procedures were collected. Machine learning models were trained to predict whether a pediatric patient would die within 1 hour after TE and evaluated on a holdout set.

SETTING

Ten U.S. PICUs.

PATIENTS

Children and adolescents, 0-21 years old, who died after TE ( n = 957).

INTERVENTIONS

None.

MEASUREMENTS AND MAIN RESULTS

The final model was a parsimonious extra-trees model with 21 input features. It was trained on the 2009-2018 data from eight sites ( n = 634) and evaluated on a holdout set comprised of the 2019-2021 data of all ten sites ( n = 323), representing temporal and external validation. The area under the receiver operating characteristic curve and 95% CI was 0.84 (95% CI, 0.81-0.87). At a sensitivity of 90%, the positive predictive value (PPV) was 88%, the negative predictive value (NPV) was 70%, and the number needed to alert (NNA) was 1.14. Among potential organ donors, at the same sensitivity level, the PPV was 86%, the NPV was 74%, and the NNA was 1.17.

CONCLUSIONS

Our model, trained and validated on multisite data, predicted whether a child will die within 1 hour of TE with high discrimination and a low false alarm rate. This finding has important applications to end-of-life counseling and institutional resource utilization when families wish to attempt DCDD.

摘要

目的

在儿科重症监护病房(PICU),预测终末拔管(TE)后1小时内死亡对于加强家属咨询以及确定循环判定死亡(DCDD)后合适的器官捐献候选者具有重要意义。本研究的目的是训练并验证一个机器学习模型,以预测TE后1小时内的死亡情况。

设计

使用2009年至2021年的多中心回顾性数据生成终末拔管后1小时死亡(DONATE)数据库。收集了涵盖人口统计学、临床特征、生命体征、实验室检查值、呼吸机设置、用药及操作等数据。训练机器学习模型以预测儿科患者在TE后1小时内是否会死亡,并在一个验证集上进行评估。

地点

美国10个PICU。

患者

0至21岁在TE后死亡的儿童和青少年(n = 957)。

干预措施

无。

测量指标及主要结果

最终模型是一个具有21个输入特征的简约极端随机树模型。它使用来自8个地点2009 - 2018年的数据(n = 634)进行训练,并在由所有10个地点2019 - 2021年数据组成的验证集(n = 323)上进行评估,代表了时间验证和外部验证。受试者工作特征曲线下面积及95%置信区间为0.84(95%置信区间,0.81 - 0.87)。在敏感度为90%时,阳性预测值(PPV)为88%,阴性预测值(NPV)为70%,需警示数(NNA)为1.14。在潜在器官捐献者中,在相同敏感度水平下,PPV为86%,NPV为74%,NNA为1.17。

结论

我们的模型在多中心数据上进行了训练和验证,能够以高辨别力和低误报率预测儿童在TE后1小时内是否会死亡。这一发现对于临终咨询以及家庭希望尝试DCDD时的机构资源利用具有重要应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验