Galeano Leidy J Nagles, Prieto-Rodríguez Juliet A, Patiño-Ladino Oscar J
Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia.
Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia.
Insects. 2025 Jun 9;16(6):609. doi: 10.3390/insects16060609.
, a major pest of stored grains, causes significant post-harvest losses and challenges effective control. While synthetic insecticides pose risks of resistance and toxicity, essential oils (EOs) offer a safer alternative. However, the insecticidal potential of their individual volatile constituents (VCs) remains largely unexplored. This study evaluated the insecticidal activity of 51 EO-derived volatile compounds (VCs) against , identifying the most toxic ones, optimizing 15 synergistic mixtures, and assessing their effects on key insect enzymes. A structure-activity relationship (SAR) analysis determined functional groups associated with insecticidal activity, while a cluster analysis pre-selected 29 ternary mixtures, later refined using response surface methodology (RSM). Additionally, enzymatic assays explored their impact on detoxification and nervous system enzymes, providing insights into potential mechanisms of action. Among the 51 VCs tested, 37 exhibited significant toxicity, with 11 acting as fumigants and 13 displaying contact toxicity. Monocyclic monoterpenoids with ketone or alcohol functional groups and exocyclic unsaturation demonstrated the highest insecticidal activity via both exposure routes. Notably, pulegone enantiomers were particularly effective (LC < 0.1 mg/L, LD < 7.5 µg/adult). Among the optimized mixtures, 10 displayed strong insecticidal effects, 8 were active through both routes, and 5 exhibited synergistic fumigant interactions. The most effective formulations were M2 (R-pulegone + S-pulegone + S-carvone, LC 0.48 mg/L) and M20 (isopulegone + δ-3-carene, LC 2.06 mg/L), showing the strongest fumigant and synergistic effects, respectively. Enzymatic assays revealed that while some compounds mildly inhibited GST and CAT, others, such as δ-3-carene (IC 0.19 mg/L), significantly inhibited AChE. Five mixtures exhibited synergistic neurotoxicity, with M20 (IC 0.61 mg/L) and M12 (IC 0.81 mg/L) emerging as the most potent AChE inhibitors. These findings highlight the potential of plant-derived volatile compounds as bioinsecticides, leveraging synergistic interactions to enhance efficacy, disrupt enzymatic pathways, and mitigate resistance.
作为储存谷物的主要害虫,造成了重大的收获后损失,并对有效防治构成挑战。虽然合成杀虫剂存在抗性和毒性风险,但精油提供了一种更安全的选择。然而,其单个挥发性成分的杀虫潜力在很大程度上仍未得到探索。本研究评估了51种源自精油的挥发性化合物对的杀虫活性,确定了毒性最强的化合物,优化了15种协同混合物,并评估了它们对关键昆虫酶的影响。结构-活性关系(SAR)分析确定了与杀虫活性相关的官能团,而聚类分析预先选择了29种三元混合物,随后使用响应面方法(RSM)进行优化。此外,酶活性测定探究了它们对解毒和神经系统酶的影响,为潜在的作用机制提供了见解。在所测试的51种挥发性化合物中,37种表现出显著毒性,其中11种起熏蒸剂作用,13种表现出接触毒性。具有酮或醇官能团以及环外不饱和键的单环单萜类化合物通过两种暴露途径表现出最高的杀虫活性。值得注意的是,胡薄荷酮对映体特别有效(LC < 0.1 mg/L,LD < 7.5 µg/成虫)。在优化的混合物中,10种表现出强烈的杀虫效果,8种通过两种途径都有活性,5种表现出协同熏蒸相互作用。最有效的配方是M2(R-胡薄荷酮+S-胡薄荷酮+S-香芹酮,LC 0.48 mg/L)和M20(异胡薄荷酮+δ-3-蒈烯,LC 2.06 mg/L),分别表现出最强的熏蒸和协同作用。酶活性测定表明,虽然一些化合物轻度抑制谷胱甘肽S-转移酶(GST)和过氧化氢酶(CAT),但其他化合物,如δ-3-蒈烯(IC 0.19 mg/L),显著抑制乙酰胆碱酯酶(AChE)。五种混合物表现出协同神经毒性,其中M20(IC 0.61 mg/L)和M12(IC 0.81 mg/L)成为最有效的AChE抑制剂。这些发现突出了植物源挥发性化合物作为生物杀虫剂的潜力,利用协同相互作用来提高功效、破坏酶促途径并减轻抗性。