Suppr超能文献

FeB团簇(n = 1 - 3)的几何结构和电子结构:来自先进计算方法的见解

Geometric and electronic structures of FeB clusters (n = 1-3): insights from advanced computational methods.

作者信息

Nguyen Hoang Lin, Tran Quoc Tri, Dang Kim Tai, Tran Van Tan

机构信息

University of Sciences, Hue University, Hue, 530000, Vietnam.

Dong Thap University, 783-Pham Huu Lau, Cao Lanh City, Dong Thap, 871000, Vietnam.

出版信息

J Mol Model. 2025 Jun 25;31(7):199. doi: 10.1007/s00894-025-06428-2.

Abstract

CONTEXT

Boron-doped iron clusters are extensively studied for their potential in materials science. Despite several quantum calculations with DFT and MRCI methods, a comprehensive understanding of the geometric and electronic structures of small FeB clusters (n = 1-3) is still lacking. This work provides new insights into ground and low-lying excited states, detachment energies, and ionization energies of these clusters using DFT and multireference CASPT2, RASPT2, and DMRG-CASPT2 computational methods. Key findings reveal Σ, Σ, and Σ as ground states for FeB, and cyclic-FeB isomers (B, B, B) as the most stable for FeB clusters. For FeB clusters, anionic species have a tetrahedral geometry, while neutral and cationic species favor rhombic structures. Detachment energies of the anionic ground states increase progressively from FeB to cyclic-FeB, and further to the tetrahedral-FeB isomer, which correlates with the number of boron atoms bonded to the iron atom. The vibrational progression in transitions within tetrahedral-FeB is more prominent than in FeB clusters and cyclic-FeB isomers. The ionization energies of neutral ground states rise from FeB clusters to rhombic-FeB and cyclic-FeB isomers.

METHODS

The geometry optimization and vibrational frequency calculations for the electronic states of FeB and FeB clusters were conducted using density functional theory (DFT) with the BP86 and MN15 functionals and the def2-QZVP basis set, implemented in ORCA 5.0. Franck-Condon factor simulations were performed using the ezSpectra suite, based on DFT-derived geometries and vibrational normal modes. Multireference RASPT2 and CASPT2 calculations utilized OpenMolcas, while DMRG-CASPT2 calculations employed ChemPS2 interfaced to OpenMolcas. The aug-cc-pwCVQZ-DK basis set was applied to iron, and aug-cc-pVQZ-DK to boron. The 1 s, 2 s, and 2p orbitals of iron and the 1 s orbital of boron were frozen in the second-order perturbation calculations. IPEA and imaginary shift parameters were set to 0.25 and 0.10, respectively. To achieve high accuracy, the DMRG-CASPT2 active spaces were expanded to 22 orbitals for FeB and FeB, and 23 orbitals for FeB.

摘要

背景

硼掺杂铁簇因其在材料科学中的潜力而受到广泛研究。尽管使用密度泛函理论(DFT)和多参考组态相互作用(MRCI)方法进行了多次量子计算,但对小尺寸FeB簇(n = 1 - 3)的几何结构和电子结构仍缺乏全面的了解。本工作使用DFT以及多参考完全活性空间二阶微扰理论(CASPT2)、限制活性空间二阶微扰理论(RASPT2)和密度矩阵重整化群完全活性空间二阶微扰理论(DMRG - CASPT2)计算方法,对这些簇的基态和低激发态、离解能和电离能提供了新的见解。关键发现表明,Σ、Σ和Σ为FeB的基态,而环状FeB异构体(B、B、B)是FeB簇中最稳定的。对于FeB簇,阴离子物种具有四面体几何结构,而中性和阳离子物种则倾向于菱形结构。阴离子基态的离解能从FeB到环状FeB再到四面体FeB异构体逐渐增加,这与与铁原子键合的硼原子数量相关。四面体FeB内跃迁的振动进展比FeB簇和环状FeB异构体更为显著。中性基态的电离能从FeB簇到菱形FeB和环状FeB异构体逐渐升高。

方法

使用密度泛函理论(DFT),采用BP86和MN15泛函以及def2 - QZVP基组,在ORCA 5.0中对FeB和FeB簇的电子态进行几何优化和振动频率计算。基于DFT导出的几何结构和振动简正模式,使用ezSpectra套件进行弗兰克 - 康登因子模拟。多参考RASPT2和CASPT2计算使用OpenMolcas,而DMRG - CASPT2计算则采用与OpenMolcas接口的ChemPS2。aug - cc - pwCVQZ - DK基组应用于铁,aug - cc - pVQZ - DK基组应用于硼。在二阶微扰计算中,铁的1s、2s和2p轨道以及硼的1s轨道被冻结。内壳层极化电子排斥(IPEA)和虚位移参数分别设置为0.25和0.10。为了达到高精度,DMRG - CASPT2活性空间对于FeB和FeB扩展到22个轨道,对于FeB扩展到23个轨道。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验