Chang Wenwen, Ji Bingyang, Li Dandan, Zhen Lei, Wei Yaxuan, Liu Xuan, Yan Guanghui
School of Electrical and Information Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
Gansu Provincial central Hospital, Lanzhou, 730079, China.
J Med Syst. 2025 Jun 25;49(1):90. doi: 10.1007/s10916-025-02224-w.
The prediction of epileptic seizures heavily depends on the precise embedding and classification of complex, multi-dimensional electroencephalogram (EEG) signals. Due to individual variability and the dynamic non-linear nature of EEG signals, extracting highly discriminative spatiotemporal features is a core challenge in this field. In this study, to address this issue, we proposed a novel architecture based on the Epilepsy Prediction using Multi-Scale Hybrid Neural Network (EPM-HNN), which integrates adaptive channel weighting, multi-scale spatial feature extraction, and bidirectional temporal dependency modeling. Specifically, we incorporated a sliding window mechanism with spatiotemporal resolution into the feature extraction process, enhancing the model's sensitivity to neural dynamics across frequency bands and improving its ability to capture micro-patterns. We used the Res2Net-50 multi-scale feature extractor to enhance the convolutional neural network's capacity to process complex local micro-features, such as polyspike-and-slow-wave complexes. Additionally, we introduced Squeeze-and-Excitation Networks (SENet) to adaptively capture potential effective features between different EEG channels. This dynamic weighting mechanism based on adaptive attention demonstrates strong robustness and high generalization across individual subject data. Furthermore, we proposed a non-single-subject, non-specific cross-subject training and testing method, demonstrating its ability to combat overfitting when addressing differences in data distribution. Experiments on the CHB-MIT scalp EEG dataset achieved an overall prediction accuracy of 97.7%, validating the effectiveness of the proposed EPM-HNN architecture.
癫痫发作的预测在很大程度上依赖于复杂的多维度脑电图(EEG)信号的精确嵌入和分类。由于EEG信号的个体变异性和动态非线性性质,提取具有高度判别力的时空特征是该领域的核心挑战。在本研究中,为解决这一问题,我们提出了一种基于多尺度混合神经网络癫痫预测(EPM-HNN)的新型架构,该架构集成了自适应通道加权、多尺度空间特征提取和双向时间依赖性建模。具体而言,我们在特征提取过程中纳入了具有时空分辨率的滑动窗口机制,增强了模型对不同频段神经动力学的敏感性,并提高了其捕获微模式的能力。我们使用Res2Net-50多尺度特征提取器来增强卷积神经网络处理复杂局部微特征(如多棘慢波复合体)的能力。此外,我们引入了挤压与激励网络(SENet)来自适应地捕获不同EEG通道之间的潜在有效特征。这种基于自适应注意力的动态加权机制在个体受试者数据上表现出强大的鲁棒性和高度的泛化性。此外,我们提出了一种非单受试者、非特异性的跨受试者训练和测试方法,证明了其在解决数据分布差异时对抗过拟合的能力。在CHB-MIT头皮EEG数据集上的实验实现了97.7%的总体预测准确率,验证了所提出的EPM-HNN架构的有效性。