Wen Zihao, Zhou Rongkun, Zheng Zilong, Liang Wanzhen, Zhao Yi
State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Lab of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
Beijing Key Lab of Microstructure and Properties of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China.
J Phys Chem Lett. 2025 Jul 3;16(26):6825-6832. doi: 10.1021/acs.jpclett.5c01424. Epub 2025 Jun 25.
The ternary strategy represents a promising approach to improving the power conversion efficiency (PCE) of organic solar cells (OSCs). However, the mechanism of the third component in optimizing both the active layer morphology and charge transfer processes remains elusive. Here, we employ a multiscale computational framework integrating first-principles calculations, molecular dynamics (MD), and kinetic Monte Carlo (KMC) simulations to elucidate the critical function of PCBM as a third component in the PM6/L8-BO blend. Our findings reveal that PCBM primarily localizes at the PM6/L8-BO interface, forming an additional high-energy charge transfer (H-CT) state between PM6 and PCBM, alongside the intrinsic low-energy CT (L-CT) state between PM6 and L8-BO. This H-CT establishes a new high-efficiency pathway for PM6 exciton dissociation, succeeding in leading to a much larger charge separation (CS) rate (6 × 10 s) than that (5 × 10 s) via the L-CT state. Furthermore, PCBM incorporation improves electron and hole mobilities as well as ambipolar transport, thereby suppressing charge recombination loss. This work unveils the dual role of PCBM in optimizing interfacial charge-transfer kinetics and bulk carrier transport, offering fundamental guidelines for a third-component design in high-performance ternary OSCs.
三元策略是提高有机太阳能电池(OSC)功率转换效率(PCE)的一种很有前景的方法。然而,第三组分在优化活性层形态和电荷转移过程中的作用机制仍不清楚。在此,我们采用了一个多尺度计算框架,该框架整合了第一性原理计算、分子动力学(MD)和动力学蒙特卡罗(KMC)模拟,以阐明PCBM作为第三组分在PM6/L8-BO共混物中的关键作用。我们的研究结果表明,PCBM主要定位于PM6/L8-BO界面,在PM6和PCBM之间形成了一个额外的高能电荷转移(H-CT)态,同时在PM6和L8-BO之间存在固有的低能CT(L-CT)态。这种H-CT为PM6激子解离建立了一条新的高效途径,其电荷分离(CS)速率(6×10 s)比通过L-CT态的速率(5×10 s)大得多。此外,引入PCBM提高了电子和空穴迁移率以及双极性传输,从而抑制了电荷复合损失。这项工作揭示了PCBM在优化界面电荷转移动力学和本体载流子传输方面的双重作用,为高性能三元有机太阳能电池的第三组分设计提供了基本指导。