文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于正电子发射断层扫描(PET)的肿瘤内CD4细胞免疫图谱分析以监测对检查点抑制剂的获得性耐药

PET-based immunomapping of intratumoral CD4 cells to monitor acquired resistance to checkpoint inhibitors.

作者信息

Pezzana Stefania, Blaess Simone, Traenkle Bjoern, Schaefer Anna, Ruoff Lara, Tako Bredi, Castaneda Vega Salvador, Kaiser Philipp D, Wagner Teresa, Gonzalez-Menendez Irene, Quintanilla-Martinez Leticia, Rochwarger Alexander, Schürch Christian M, Riel Simon, Schaller Martin, van Genugten Evelien A J, van der Hoorn Iris A E, Gorris Mark A J, Steinvoort Megan, Peeters Eva, de Vries I Jolanda M, van den Heuvel Michel M, Aarntzen Erik H J G, Maurer Andreas, Rothbauer Ulrich, Pichler Bernd J, Kneilling Manfred, Sonanini Dominik

机构信息

Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tuebingen, University of Tuebingen, Tuebingen, Germany.

NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany.

出版信息

Sci Adv. 2025 Jun 27;11(26):eadw1924. doi: 10.1126/sciadv.adw1924. Epub 2025 Jun 25.


DOI:10.1126/sciadv.adw1924
PMID:40561008
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12190014/
Abstract

CD4 T cells are crucial in shaping response and resistance to immunotherapy. To enhance our understanding of their multifaceted functions, we developed copper-64-radiolabeled nanobodies targeting the human CD4 receptor (Cu-CD4-Nb1) for positron emission tomography (PET). In human CD4-receptor knock-in mice, Cu-CD4-Nb1 specifically accumulated in different orthotopic tumors, correlating with histological CD4 cell densities. Based on intratumoral CD4 cell distribution patterns within the core and periphery, we distinguished responders to combined αPD-1/4-1BB antibodies early on-treatment. CD4-PET identified resistance to αPD-1 monotherapy, which was mitigated by adding regulatory T cell-depleting α4-1BB antibodies. Patients with early-stage non-small cell lung cancer who relapsed after neoadjuvant αPD-L1 therapy revealed low CD4 T cell densities in the tumor core. In human and mouse tumor tissues, regulatory T cells correlated with CD4 cell densities. Thus, visualizing the spatial distribution patterns of CD4 cells by PET offers mechanistic insights into CD4-mediated therapy efficacy, with great potential for guiding combinatorial immunotherapies in patients with cancer.

摘要

CD4 T细胞在塑造对免疫疗法的反应和抗性方面至关重要。为了加深我们对其多方面功能的理解,我们开发了用于正电子发射断层扫描(PET)的靶向人CD4受体的铜-64放射性标记纳米抗体(Cu-CD4-Nb1)。在人CD4受体敲入小鼠中,Cu-CD4-Nb1特异性积聚在不同的原位肿瘤中,与组织学CD4细胞密度相关。基于肿瘤核心和周边内的肿瘤内CD4细胞分布模式,我们在联合αPD-1/4-1BB抗体治疗早期就区分出反应者。CD4-PET确定了对αPD-1单药治疗的抗性,通过添加消耗调节性T细胞的α4-1BB抗体可减轻这种抗性。新辅助αPD-L1治疗后复发的早期非小细胞肺癌患者在肿瘤核心显示出低CD4 T细胞密度。在人和小鼠肿瘤组织中,调节性T细胞与CD4细胞密度相关。因此,通过PET可视化CD4细胞的空间分布模式为CD4介导的治疗疗效提供了机制性见解,在指导癌症患者的联合免疫疗法方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96ff/12190014/e891f36a324d/sciadv.adw1924-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96ff/12190014/77da16ceb976/sciadv.adw1924-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96ff/12190014/8d7d5d2cbe9a/sciadv.adw1924-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96ff/12190014/39622c144e0a/sciadv.adw1924-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96ff/12190014/25f1194fe35b/sciadv.adw1924-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96ff/12190014/6c8668753f1e/sciadv.adw1924-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96ff/12190014/e891f36a324d/sciadv.adw1924-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96ff/12190014/77da16ceb976/sciadv.adw1924-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96ff/12190014/8d7d5d2cbe9a/sciadv.adw1924-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96ff/12190014/39622c144e0a/sciadv.adw1924-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96ff/12190014/25f1194fe35b/sciadv.adw1924-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96ff/12190014/6c8668753f1e/sciadv.adw1924-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96ff/12190014/e891f36a324d/sciadv.adw1924-f6.jpg

相似文献

[1]
PET-based immunomapping of intratumoral CD4 cells to monitor acquired resistance to checkpoint inhibitors.

Sci Adv. 2025-6-27

[2]
Spatially resolved transcriptomics reveal the determinants of primary resistance to immunotherapy in NSCLC with mature tertiary lymphoid structures.

Cell Rep Med. 2025-2-18

[3]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[4]
Blocking ITGA5 potentiates the efficacy of anti-PD-1 therapy on glioblastoma by remodeling tumor-associated macrophages.

Cancer Commun (Lond). 2025-3-14

[5]
Efficacy and safety of immune checkpoint inhibitors as neoadjuvant therapy in perioperative patients with non-small cell lung cancer: a network meta-analysis and systematic review based on randomized controlled trials.

Front Immunol. 2024

[6]
Rechallenge of immune checkpoint inhibitor after local therapy for immune checkpoint inhibitor-resistant non-small cell lung cancer.

Chin Clin Oncol. 2025-6

[7]
FDG-PET-based differential uptake volume histograms: a possible approach towards definition of biological target volumes.

Br J Radiol. 2016-6

[8]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[9]
Intratumoral IL12 mRNA administration activates innate and adaptive pathways in checkpoint inhibitor-resistant tumors resulting in complete responses.

Cancer Immunol Immunother. 2025-6-25

[10]
Comparison of Efficacy and Safety of Single and Double Immune Checkpoint Inhibitor-Based First-Line Treatments for Advanced Driver-Gene Wild-Type Non-Small Cell Lung Cancer: A Systematic Review and Network Meta-Analysis.

Front Immunol. 2021

引用本文的文献

[1]
Cu-labeled Nanobodies Monitor CD4+ T-Cell Populations in Response to Immunotherapy Using PET Imaging.

Radiol Imaging Cancer. 2025-7

本文引用的文献

[1]
Immunogenomic cancer evolution: A framework to understand cancer immunosuppression.

Sci Immunol. 2025-3-28

[2]
Adiponectin reduces immune checkpoint inhibitor-induced inflammation without blocking anti-tumor immunity.

Cancer Cell. 2025-2-10

[3]
ImmuNet: a segmentation-free machine learning pipeline for immune landscape phenotyping in tumors by multiplex imaging.

Biol Methods Protoc. 2024-12-20

[4]
Next-generation combination approaches for immune checkpoint therapy.

Nat Immunol. 2024-12

[5]
Depletion of conventional CD4 T cells is required for robust priming and dissemination of tumor antigen-specific CD8 T cells in the setting of anti-CD4 therapy.

J Immunother Cancer. 2024-11-9

[6]
Discovery of nanobodies: a comprehensive review of their applications and potential over the past five years.

J Nanobiotechnology. 2024-10-26

[7]
CD4 T cells in antitumor immunity.

Trends Cancer. 2024-10

[8]
In-depth cross-validation of human and mouse CD4-specific minibodies for noninvasive PET imaging of CD4 cells and response prediction to cancer immunotherapy.

Theranostics. 2024

[9]
Single-Cell Analysis Identifies Distinct Populations of Cytotoxic CD4 T Cells Linked to the Therapeutic Efficacy of Immune Checkpoint Inhibitors in Metastatic Renal Cell Carcinoma.

J Inflamm Res. 2024-7-10

[10]
Intratumoral immune triads are required for immunotherapy-mediated elimination of solid tumors.

Cancer Cell. 2024-7-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索