Suppr超能文献

预测心力衰竭住院风险的机器学习方法、应用及经济分析:一项范围综述

Machine learning methods, applications and economic analysis to predict heart failure hospitalisation risk: a scoping review.

作者信息

Abreu João, Seringa Joana, Magalhaes Teresa

机构信息

NOVA National School of Public Health, NOVA University Lisbon, Lisbon, Portugal

NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center (CHRC), REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal.

出版信息

BMJ Open. 2025 Jun 25;15(6):e093495. doi: 10.1136/bmjopen-2024-093495.

Abstract

BACKGROUND

Machine Learning (ML) has been transformative in healthcare, enabling more precise diagnostics, personalised treatment regimens and enhanced patient care. In cardiology, ML plays a crucial role in risk prediction and patient stratification, particularly for heart failure (HF), a condition affecting over 64 million people globally and imposing an economic burden of approximately $108 billion annually. ML applications in HF include predictive analytics for risk assessment, identifying patient subgroups with varying prognoses and optimising treatment pathways. By accurately predicting the likelihood of hospitalisation and rehospitalisation, ML tools help tailor interventions, reduce hospital visits, improve patient outcomes and lower healthcare costs.

OBJECTIVE

To conduct a comprehensive review of existing ML models designed to predict hospitalisation risk in individuals with HF.

METHODS

A database search including PubMed, SCOPUS and Web of Science was conducted on 31 March 2024. Studies were selected based on inclusion criteria focusing on ML models predicting hospitalisation risks in adults with HF. The data from 27 studies meeting the criteria were extracted and analysed, with a focus on the predictive performance of the ML models and the presence of economic analysis.

RESULTS

Most studies focused on predicting readmission rather than first-time hospitalisation. All included studies employed supervised ML algorithms, with ensemble-based methods generally yielding the highest predictive performance. For 30-day hospitalisation or readmission risk, Extreme Gradient Boosting (XGBoost) achieved the highest mean area under the curve (AUC) (0.69), followed by Naïve Bayes (0.68) and Deep Unified Networks (0.66). For 90-day risk, the best-performing models were Least Absolute Shrinkage and Selection Operator and Gradient Boosting, both with a mean AUC of 0.75, followed by Random Forest (0.67). When the prediction timeframe was unspecified, Categorical Boosting achieved the highest performance with a mean AUC of 0.88, followed by Generalised Linear Model Net and XGBoost (both 0.79).Electronic health records were the primary data source across studies; however, few models included patient-reported outcomes or socioeconomic variables.None of the studies conducted an economic evaluation to assess the cost-effectiveness of these models.

CONCLUSIONS

ML holds substantial potential for improving HF care. However, further efforts are needed to enhance the generalisation of models, integrate diverse data sources and evaluate the cost-effectiveness of these technologies.

摘要

背景

机器学习(ML)已在医疗保健领域带来变革,实现了更精确的诊断、个性化治疗方案以及改善患者护理。在心脏病学中,ML在风险预测和患者分层方面发挥着关键作用,尤其是对于心力衰竭(HF)而言,这种疾病在全球影响着超过6400万人,每年造成约1080亿美元的经济负担。ML在HF中的应用包括用于风险评估的预测分析、识别预后不同的患者亚组以及优化治疗途径。通过准确预测住院和再次住院的可能性,ML工具有助于调整干预措施、减少医院就诊次数、改善患者预后并降低医疗成本。

目的

对旨在预测HF患者住院风险的现有ML模型进行全面综述。

方法

于2024年3月31日对包括PubMed、SCOPUS和Web of Science在内的数据库进行检索。根据纳入标准选择研究,重点关注预测HF成年患者住院风险的ML模型。提取并分析了符合标准的27项研究的数据,重点关注ML模型的预测性能以及经济分析的情况。

结果

大多数研究侧重于预测再次住院而非首次住院。所有纳入研究均采用监督式ML算法,基于集成的方法通常具有最高的预测性能。对于30天住院或再次住院风险,极端梯度提升(XGBoost)的曲线下平均面积(AUC)最高(0.69),其次是朴素贝叶斯(0.68)和深度统一网络(0.66)。对于90天风险,表现最佳的模型是最小绝对收缩和选择算子以及梯度提升,两者的平均AUC均为0.75,其次是随机森林(0.67)。当预测时间范围未明确指定时,分类提升的性能最高,平均AUC为0.88,其次是广义线性模型网络和XGBoost(均为0.79)。电子健康记录是各研究中的主要数据源;然而,很少有模型纳入患者报告的结果或社会经济变量。没有一项研究进行经济评估以评估这些模型的成本效益。

结论

ML在改善HF护理方面具有巨大潜力。然而,需要进一步努力来提高模型的泛化能力、整合多样的数据源并评估这些技术的成本效益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验