Filipek Beata, Macieja Anna, Binda Aleksandra, Szelenberger Rafal, Gorniak Leslaw, Miller Elzbieta, Swiderek-Matysiak Mariola, Stasiolek Mariusz, Majsterek Ireneusz, Poplawski Tomasz
Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland.
Department of Neurology, Medical University of Lodz, Kopcinskiego 22, 90-153 Lodz, Poland.
Biomolecules. 2025 May 24;15(6):756. doi: 10.3390/biom15060756.
Multiple sclerosis (MS) is a neuroinflammatory disease where oxidative stress and DNA damage may influence disease progression. We investigated whether defects in base excision repair (BER) pathways contribute to MS by combining functional DNA repair assays, gene expression profiling, and genotype analysis. We collected peripheral blood mononuclear cells from 70 MS patients and 61 healthy controls. These cells were subjected to tert-butyl hydroperoxide (TBH)-induced oxidative stress, and comet assay kinetics were measured over a period of 60 min. Additionally, we quantified the mRNA expression of nine key BER genes and genotyped selected polymorphisms related to DNA repair capacity. Samples from MS patients exhibited significantly higher levels of TBH-induced DNA lesions and displayed a distinct repair trajectory over time, as indicated by area-under-the-curve (AUC) analyses ( < 0.001). The transcripts of and were notably reduced in MS patients compared to those in the controls ( < 0.0001). A logistic regression analysis revealed an association between the specific BER-related single nucleotide polymorphisms (SNPs) rs3087404, rs4135054, and rs1052133 and ineffective DNA repair. Subset analyses of B cells, CD4 cells, and CD8 cells further supported the presence of altered repair kinetics in MS, even though some subsets exhibited similar baseline lesion levels. Our findings suggest that impaired oxidative DNA repair is present in MS, likely driven by functional deficits in repair kinetics and alterations in the expression of BER genes and polymorphisms. This integrated approach highlights DNA repair pathways as potential therapeutic or prognostic targets in MS.
多发性硬化症(MS)是一种神经炎症性疾病,其中氧化应激和DNA损伤可能会影响疾病进展。我们通过结合功能性DNA修复检测、基因表达谱分析和基因型分析,研究碱基切除修复(BER)途径中的缺陷是否会导致MS。我们从70例MS患者和61例健康对照中收集外周血单个核细胞。这些细胞受到叔丁基过氧化氢(TBH)诱导的氧化应激作用,并在60分钟内测量彗星试验动力学。此外,我们对9个关键BER基因的mRNA表达进行了定量,并对与DNA修复能力相关的选定多态性进行了基因分型。MS患者的样本显示出TBH诱导的DNA损伤水平显著更高,并且随着时间的推移呈现出独特的修复轨迹,曲线下面积(AUC)分析表明(<0.001)。与对照组相比,MS患者中 和 的转录本显著减少(<0.0001)。逻辑回归分析显示,特定的BER相关单核苷酸多态性(SNP)rs3087404、rs4135054和rs1052133与无效的DNA修复之间存在关联。对B细胞、CD4细胞和CD8细胞的亚组分析进一步支持了MS中存在改变的修复动力学,尽管一些亚组表现出相似的基线损伤水平。我们的研究结果表明,MS中存在氧化DNA修复受损的情况,可能是由修复动力学的功能缺陷以及BER基因和多态性表达的改变所驱动。这种综合方法突出了DNA修复途径作为MS潜在治疗或预后靶点的可能性。