Suppr超能文献

一种用于无人机图像中小牲畜目标检测的高效算法。

An Efficient Algorithm for Small Livestock Object Detection in Unmanned Aerial Vehicle Imagery.

作者信息

Chen Wenbo, Wang Dongliang, Xie Xiaowei

机构信息

Key Laboratory of Land Surface Pattern and Simulation, Institute of Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.

School of Surveying and Geoinformation Engineering, East China University of Technology, Nanchang 330013, China.

出版信息

Animals (Basel). 2025 Jun 18;15(12):1794. doi: 10.3390/ani15121794.

Abstract

Livestock population surveys are crucial for grassland management tasks such as health and epidemic prevention, grazing prohibition, rest grazing, and forage-livestock balance assessment. These tasks are integral to the modernization and upgrading of the livestock industry and the sustainable development of grasslands. Unmanned aerial vehicles (UAVs) provide significant advantages in flexibility and maneuverability, making them ideal for livestock population surveys. However, grazing livestock in UAV images often appear small and densely packed, leading to identification errors. To address this challenge, we propose an efficient Livestock Network (LSNET) algorithm, a novel YOLOv7-based network. Our approach incorporates a low-level prediction head (P2) to detect small objects from shallow feature maps, while removing a deep-level prediction head (P5) to mitigate the effects of excessive down-sampling. To capture high-level semantic features, we introduce the Large Kernel Attentions Spatial Pyramid Pooling (LKASPP) module. In addition, we replaced the original CIoU with the WIoU v3 loss function. Furthermore, we developed a dataset of grazing livestock for deep learning using UAV images from the Prairie Chenbarhu Banner in Hulunbuir, Inner Mongolia. Our results demonstrate that the proposed module significantly improves the detection accuracy for small livestock objects, with the mean Average Precision (mAP) increasing by 1.47% compared to YOLOv7. Thus, this work offers a novel and practical solution for livestock detection in expansive farms. It overcomes the limitations of existing methods and contributes to more effective livestock management and advancements in agricultural technology.

摘要

牲畜数量调查对于草地管理任务至关重要,如健康与防疫、禁牧、休牧以及草畜平衡评估等。这些任务是畜牧业现代化升级和草地可持续发展不可或缺的部分。无人机在灵活性和机动性方面具有显著优势,使其成为牲畜数量调查的理想选择。然而,无人机图像中的放牧牲畜往往显得小且密集,容易导致识别错误。为应对这一挑战,我们提出了一种高效的牲畜网络(LSNET)算法,这是一种基于YOLOv7的新型网络。我们的方法引入了一个低级预测头(P2),用于从浅层特征图中检测小目标,同时去除一个深层预测头(P5),以减轻过度下采样的影响。为了捕捉高级语义特征,我们引入了大核注意力空间金字塔池化(LKASPP)模块。此外,我们用WIoU v3损失函数取代了原来的CIoU。此外,我们利用内蒙古呼伦贝尔陈巴尔虎旗草原的无人机图像开发了一个用于深度学习的放牧牲畜数据集。我们的结果表明,所提出的模块显著提高了对小牲畜目标的检测精度,与YOLOv7相比,平均精度均值(mAP)提高了1.47%。因此,这项工作为广阔农场中的牲畜检测提供了一种新颖且实用的解决方案。它克服了现有方法的局限性,有助于更有效地进行牲畜管理和推动农业技术进步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/477b/12189871/b42f91de5f0f/animals-15-01794-g001.jpg

相似文献

1
An Efficient Algorithm for Small Livestock Object Detection in Unmanned Aerial Vehicle Imagery.
Animals (Basel). 2025 Jun 18;15(12):1794. doi: 10.3390/ani15121794.
2
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
3
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
4
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
5
SODU2-NET: a novel deep learning-based approach for salient object detection utilizing U-NET.
PeerJ Comput Sci. 2025 May 19;11:e2623. doi: 10.7717/peerj-cs.2623. eCollection 2025.
7
Perceptions and experiences of the prevention, detection, and management of postpartum haemorrhage: a qualitative evidence synthesis.
Cochrane Database Syst Rev. 2023 Nov 27;11(11):CD013795. doi: 10.1002/14651858.CD013795.pub2.
8
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.
10
Interventions for promoting habitual exercise in people living with and beyond cancer.
Cochrane Database Syst Rev. 2018 Sep 19;9(9):CD010192. doi: 10.1002/14651858.CD010192.pub3.

本文引用的文献

1
A Lightweight underwater detector enhanced by Attention mechanism, GSConv and WIoU on YOLOv8.
Sci Rep. 2024 Oct 28;14(1):25797. doi: 10.1038/s41598-024-75809-z.
2
Improved YOLOv7-Based Algorithm for Detecting Foreign Objects on the Roof of a Subway Vehicle.
Sensors (Basel). 2023 Nov 27;23(23):9440. doi: 10.3390/s23239440.
4
Assessing Rotation-Invariant Feature Classification for Automated Wildebeest Population Counts.
PLoS One. 2016 May 26;11(5):e0156342. doi: 10.1371/journal.pone.0156342. eCollection 2016.
6
Automated detection and recognition of wildlife using thermal cameras.
Sensors (Basel). 2014 Jul 30;14(8):13778-93. doi: 10.3390/s140813778.
7
Livestock production: recent trends, future prospects.
Philos Trans R Soc Lond B Biol Sci. 2010 Sep 27;365(1554):2853-67. doi: 10.1098/rstb.2010.0134.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验