Wang Yue, Zhu Tianshu, Cheng Qian, Cui Xiaolin, Zhang Pengfei, Lu Zhiming
Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
J Alzheimers Dis Rep. 2025 Jun 24;9:25424823251331110. doi: 10.1177/25424823251331110. eCollection 2025 Jan-Dec.
Alzheimer's disease (AD) is the most common type of dementia, and early screening is crucial for intervention.
Currently, early screening for older adults without dementia primarily rely on cognitive scale. This study aims to explore a more feasible approach.
Plasma biomarkers (Aβ, p-tau181 and p-tau217) and Gaussian mixture models (GMM) were utilized for stratifying risk levels in older adults without dementia from the Alzheimer's Disease Neuroimaging Initiative. Linear mixed effects model was employed to compare subsequent pathological and cognitive changes, alongside a comparison with traditional scale-based screening methods. Cox regression model was used to assess the risk of progression to dementia across different biomarker status groups.
Plasma Aβ and p-tau217 effectively predicted Aβ PET pathological progression, while p-tau217 also predicted tau PET changes. All three biomarkers could forecast the progression of FDG PET and cognitive function. P-tau217 and p-tau181 significantly modulated pathology-related cognitive impairment. All three biomarkers could predict dementia risk. The screening method combining GMM with plasma biomarkers demonstrates superior predictive ability compared to traditional scale-based approaches.
Our study indicated that the combination of GMM and plasma biomarkers for community screening shows promising potential in monitoring brain health among older adults without dementia. P-tau217 exhibited the best predictive value among the three plasma biomarkers.
阿尔茨海默病(AD)是最常见的痴呆类型,早期筛查对于干预至关重要。
目前,对无痴呆的老年人进行早期筛查主要依靠认知量表。本研究旨在探索一种更可行的方法。
利用血浆生物标志物(Aβ、p-tau181和p-tau217)和高斯混合模型(GMM)对来自阿尔茨海默病神经影像倡议的无痴呆老年人的风险水平进行分层。采用线性混合效应模型比较随后的病理和认知变化,并与传统的基于量表的筛查方法进行比较。使用Cox回归模型评估不同生物标志物状态组进展为痴呆的风险。
血浆Aβ和p-tau217有效预测了Aβ PET病理进展,而p-tau217也预测了tau PET变化。所有三种生物标志物都可以预测FDG PET和认知功能的进展。p-tau217和p-tau181显著调节与病理相关的认知障碍。所有三种生物标志物都可以预测痴呆风险。与传统的基于量表的方法相比,将GMM与血浆生物标志物相结合的筛查方法具有更好的预测能力。
我们的研究表明,将GMM与血浆生物标志物相结合用于社区筛查在监测无痴呆老年人的脑健康方面显示出有前景的潜力。在三种血浆生物标志物中,p-tau217表现出最佳的预测价值。