Rajendran Megha, Rosencrans William M, Fitzgerald Wendy, Huynh Diana, Beyene Bethel G, Quan Baiyi, Hwang Julie, Bautista Nina A, Chou Tsui-Fen, Bezrukov Sergey M, Rostovtseva Tatiana K
Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA 20892.
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA 91125.
bioRxiv. 2025 Apr 7:2025.02.20.639106. doi: 10.1101/2025.02.20.639106.
The Voltage Dependent Anion Channel (VDAC) is the most ubiquitous protein in the mitochondrial outer membrane. This channel facilitates the flux of water-soluble metabolites and ions like calcium across the mitochondrial outer membrane. Beyond this canonical role, VDAC has been implicated, through interactions with protein partners, in several cellular processes such as apoptosis, calcium signaling, and lipid metabolism. There are three VDAC isoforms in mammalian cells, VDAC 1, 2, and 3, with varying tissue-specific expression profiles. From a biophysical standpoint, all three isoforms can conduct metabolites and ions with similar efficiency. However, isoform knockouts (KOs) in mice lead to distinct phenotypes, which may be due to differences in VDAC isoform interactions with partner proteins. To understand the functional role of each VDAC isoform within a single cell type, we created functional KOs of each isoform in HeLa cells and performed a comparative study of their metabolic activity and proteomics. We found that each isoform KO alters the proteome differently, with VDAC3 KO dramatically downregulating key members of the electron transport chain (ETC) while shifting the mitochondria into a glutamine-dependent state. Importantly, this unexpected dependence of mitochondrial function on the VDAC3 isoform is not compensated by the more ubiquitously expressed VDAC1 and VDAC2 isoforms. In contrast, VDAC2 KO did not affect respiration but upregulated ETC components and decreased key enzymes in the glutamine metabolic pathway. VDAC1 KO specifically reduced glycolytic activity linked to decreased hexokinase localization to mitochondria. These results reveal non-redundant roles of VDAC isoforms in cancer cell metabolic adaptability.
电压依赖性阴离子通道(VDAC)是线粒体外膜中最普遍存在的蛋白质。该通道促进水溶性代谢物和离子(如钙)穿过线粒体外膜。除了这一经典作用外,通过与蛋白质伙伴的相互作用,VDAC还参与了多种细胞过程,如细胞凋亡、钙信号传导和脂质代谢。哺乳动物细胞中有三种VDAC亚型,即VDAC 1、2和3,它们具有不同的组织特异性表达谱。从生物物理学角度来看,所有三种亚型都能以相似的效率传导代谢物和离子。然而,小鼠中的亚型基因敲除(KO)会导致不同的表型,这可能是由于VDAC亚型与伙伴蛋白相互作用的差异所致。为了了解每种VDAC亚型在单一细胞类型中的功能作用,我们在HeLa细胞中创建了每种亚型的功能性基因敲除,并对其代谢活性和蛋白质组学进行了比较研究。我们发现,每种亚型的基因敲除对蛋白质组的影响不同,VDAC3基因敲除显著下调电子传递链(ETC)的关键成员,同时使线粒体转变为谷氨酰胺依赖状态。重要的是,线粒体功能对VDAC3亚型的这种意外依赖性不能由更广泛表达的VDAC1和VDAC2亚型来补偿。相比之下,VDAC2基因敲除不影响呼吸作用,但上调了ETC成分,并降低了谷氨酰胺代谢途径中的关键酶。VDAC1基因敲除特异性降低了与己糖激酶在线粒体中定位减少相关的糖酵解活性。这些结果揭示了VDAC亚型在癌细胞代谢适应性中的非冗余作用。