文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能驱动的纳米酶设计革命:从偶然发现到理性工程设计

Artificial intelligence-driven revolution in nanozyme design: from serendipity to rational engineering.

作者信息

Yu Yixin, Zhang Mingzhen, Fan Kelong

机构信息

CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Mater Horiz. 2025 Jun 26. doi: 10.1039/d5mh00719d.


DOI:10.1039/d5mh00719d
PMID:40569573
Abstract

Nanozymes are a class of nanomaterials that possess catalytic functions similar to those of natural enzymes. Due to their tunable catalytic activity and unique nanoscale properties, these materials exhibit significant potential for applications in biomedical diagnostics, industrial catalysis, and environmental remediation. However, the marked heterogeneity in their catalytic performance and complex multidimensional structure-activity relationships pose challenges to traditional trial-and-error experimental paradigms, which suffer from low efficiency in rational design and prolonged development cycles. With the rapid advancement of artificial intelligence (AI) technologies, nanozyme research is undergoing a transformative shift from empirical exploration to a fourth-generation research paradigm characterized by "data-driven and theory-computing" approaches. Here, the deep integration of machine learning (ML) is reshaping the entire nanozyme research and development workflow, offering new opportunities for rational design and intelligent applications. This review begins by systematically introducing the fundamental classifications and algorithmic principles of ML, elucidating its technical advantages in nanozyme research, and proposing a universal ML-assisted research framework tailored to the unique challenges of nanozyme studies. Through representative case studies, we delve into groundbreaking advancements in the use of ML in predicting catalytic activity, optimizing structures, and enabling smart applications of nanozymes. Finally, we address critical challenges in current ML-assisted nanozyme research-such as data quality and model interpretability-and propose future optimization strategies to advance nanozyme studies toward greater efficiency, precision, and intelligence, aiming to provide novel insights for paradigm innovation in materials science, fostering the evolution of next-generation research methodologies.

摘要

纳米酶是一类具有与天然酶相似催化功能的纳米材料。由于其可调的催化活性和独特的纳米尺度特性,这些材料在生物医学诊断、工业催化和环境修复等应用中展现出巨大潜力。然而,其催化性能的显著异质性以及复杂的多维结构 - 活性关系对传统的试错实验范式构成了挑战,传统范式在合理设计方面效率低下且开发周期长。随着人工智能(AI)技术的迅速发展,纳米酶研究正在经历从经验探索到以“数据驱动和理论计算”方法为特征的第四代研究范式的变革性转变。在此,机器学习(ML)的深度整合正在重塑整个纳米酶研发工作流程,为合理设计和智能应用提供新机遇。本综述首先系统介绍ML的基本分类和算法原理,阐明其在纳米酶研究中的技术优势,并提出一个针对纳米酶研究独特挑战量身定制的通用ML辅助研究框架。通过代表性案例研究,我们深入探讨了ML在预测纳米酶催化活性、优化结构和实现智能应用方面的突破性进展。最后,我们探讨了当前ML辅助纳米酶研究中的关键挑战,如数据质量和模型可解释性,并提出未来的优化策略,以推动纳米酶研究朝着更高效率、精度和智能发展,旨在为材料科学中的范式创新提供新见解,促进下一代研究方法的演进。

相似文献

[1]
Artificial intelligence-driven revolution in nanozyme design: from serendipity to rational engineering.

Mater Horiz. 2025-6-26

[2]
The dawn of a new era: can machine learning and large language models reshape QSP modeling?

J Pharmacokinet Pharmacodyn. 2025-6-16

[3]
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.

Acc Chem Res. 2025-6-17

[4]
Uterotonic agents for preventing postpartum haemorrhage: a network meta-analysis.

Cochrane Database Syst Rev. 2018-4-25

[5]
A Systematic Review and Bibliometric Analysis of Applications of Artificial Intelligence and Machine Learning in Vascular Surgery.

Ann Vasc Surg. 2022-9

[6]
AI for IMPACTS Framework for Evaluating the Long-Term Real-World Impacts of AI-Powered Clinician Tools: Systematic Review and Narrative Synthesis.

J Med Internet Res. 2025-2-5

[7]
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.

Comput Methods Programs Biomed. 2025-6-21

[8]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[9]
Wood Waste Valorization and Classification Approaches: A systematic review.

Open Res Eur. 2025-5-6

[10]
What makes a 'good' decision with artificial intelligence? A grounded theory study in paediatric care.

BMJ Evid Based Med. 2025-5-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索