文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

新时代的曙光:机器学习和大语言模型能否重塑定量系统药理学建模?

The dawn of a new era: can machine learning and large language models reshape QSP modeling?

作者信息

Androulakis Ioannis P, Cucurull-Sanchez Lourdes, Kondic Anna, Mehta Krina, Pichardo Cesar, Pryor Meghan, Renardy Marissa

机构信息

Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.

Quantitative Systems Special Interest Group (QSP SIG), International Society of Pharmacometrics (ISoP), Bridgewater, USA.

出版信息

J Pharmacokinet Pharmacodyn. 2025 Jun 16;52(4):36. doi: 10.1007/s10928-025-09984-5.


DOI:10.1007/s10928-025-09984-5
PMID:40524056
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12170689/
Abstract

Quantitative Systems Pharmacology (QSP) has emerged as a cornerstone of modern drug development, providing a robust framework to integrate data from preclinical and clinical studies, enhance decision-making, and optimize therapeutic strategies. By modeling biological systems and drug interactions, QSP enables predictions of outcomes, optimization of dosing regimens, and personalized medicine applications. Recent advancements in artificial intelligence (AI) and machine learning (ML) hold the potential to significantly transform QSP by enabling enhanced data extraction, fostering the development of hybrid mechanistic ML models, and supporting the introduction of surrogate models and digital twins. This manuscript explores the transformative role of AI and ML in reshaping QSP modeling workflows. AI/ML tools now enable automated literature mining, the generation of dynamic models from data, and the creation of hybrid frameworks that blend mechanistic insights with data-driven approaches. Large Language Models (LLMs) further revolutionize the field by transitioning AI/ML from merely a tool to becoming an active partner in QSP modeling. By facilitating interdisciplinary collaboration, lowering barriers to entry, and democratizing QSP workflows, LLMs empower researchers without deep coding expertise to engage in complex modeling tasks. Additionally, the integration of Artificial General Intelligence (AGI) holds the potential to autonomously propose, refine, and validate models, further accelerating innovation across multiscale biological processes. Key challenges remain in integrating AI/ML into QSP workflows, particularly in ensuring rigorous validation pipelines, addressing ethical considerations, and establishing robust regulatory frameworks to address the reliability and reproducibility of AI-assisted models. Moreover, the complexity of multiscale biological integration, effective data management, and fostering interdisciplinary collaboration present ongoing hurdles. Despite these challenges, the potential of AI/ML to enhance hybrid model development, improve model interpretability, and democratize QSP modeling offers an exciting opportunity to revolutionize drug development and therapeutic innovation. This work highlights a pathway toward a transformative era for QSP, leveraging advancements in AI and ML to address these challenges and drive innovation in the field.

摘要

定量系统药理学(QSP)已成为现代药物开发的基石,为整合临床前和临床研究数据、加强决策制定以及优化治疗策略提供了一个强大的框架。通过对生物系统和药物相互作用进行建模,QSP能够预测结果、优化给药方案并应用于个性化医疗。人工智能(AI)和机器学习(ML)的最新进展有可能通过实现增强的数据提取、促进混合机制ML模型的开发以及支持引入替代模型和数字孪生,从而显著改变QSP。本文探讨了AI和ML在重塑QSP建模工作流程中的变革性作用。AI/ML工具现在能够实现自动化文献挖掘、从数据生成动态模型以及创建将机制性见解与数据驱动方法相结合的混合框架。大语言模型(LLMs)通过将AI/ML从仅仅是一种工具转变为QSP建模中的积极合作伙伴,进一步彻底改变了该领域。通过促进跨学科合作、降低进入门槛以及使QSP工作流程民主化,LLMs使没有深厚编码专业知识的研究人员能够参与复杂的建模任务。此外,通用人工智能(AGI)的整合有可能自主提出、完善和验证模型,进一步加速跨多尺度生物过程的创新。将AI/ML整合到QSP工作流程中仍然存在关键挑战,特别是在确保严格的验证流程、解决伦理问题以及建立强大的监管框架以解决AI辅助模型的可靠性和可重复性方面。此外,多尺度生物整合的复杂性、有效的数据管理以及促进跨学科合作仍然存在持续的障碍。尽管存在这些挑战,AI/ML在增强混合模型开发、提高模型可解释性以及使QSP建模民主化方面的潜力,为彻底改变药物开发和治疗创新提供了一个令人兴奋的机会。这项工作突出了一条通往QSP变革时代的途径,利用AI和ML的进展来应对这些挑战并推动该领域的创新。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a110/12170689/352ae8623a3c/10928_2025_9984_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a110/12170689/9b39e61f6a7c/10928_2025_9984_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a110/12170689/352ae8623a3c/10928_2025_9984_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a110/12170689/9b39e61f6a7c/10928_2025_9984_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a110/12170689/352ae8623a3c/10928_2025_9984_Fig2_HTML.jpg

相似文献

[1]
The dawn of a new era: can machine learning and large language models reshape QSP modeling?

J Pharmacokinet Pharmacodyn. 2025-6-16

[2]
Leveraging large language models to compare perspectives on integrating QSP and AI/ML.

J Pharmacokinet Pharmacodyn. 2025-5-5

[3]
AML diagnostics in the 21st century: Use of AI.

Semin Hematol. 2025-6-16

[4]
Stench of Errors or the Shine of Potential: The Challenge of (Ir)Responsible Use of ChatGPT in Speech-Language Pathology.

Int J Lang Commun Disord. 2025

[5]
Revolutionizing drug discovery: Integrating artificial intelligence with quantitative systems pharmacology.

Drug Discov Today. 2025-8-6

[6]
Advancing personalized healthcare: leveraging explainable AI for BPPV risk assessment.

Health Inf Sci Syst. 2024-11-24

[7]
Artificial-intelligence-driven Innovations in Mechanistic Computational Modeling and Digital Twins for Biomedical Applications.

J Mol Biol. 2025-4-30

[8]
Pharmacovigilance in the Era of Artificial Intelligence: Advancements, Challenges, and Considerations.

Cureus. 2025-6-29

[9]
Recent Development, Applications, and Patents of Artificial Intelligence in Drug Design and Development.

Curr Drug Discov Technol. 2025-2-10

[10]
The Role of Artificial Intelligence in Heart Failure Diagnostics, Risk Prediction, and Therapeutic Strategies: A Comprehensive Review.

Cureus. 2025-7-1

本文引用的文献

[1]
Application of machine learning in combination with mechanistic modeling to predict plasma exposure of small molecules.

Front Syst Biol. 2023-6-20

[2]
The rise of scientific machine learning: a perspective on combining mechanistic modelling with machine learning for systems biology.

Front Syst Biol. 2024-8-2

[3]
Coupling quantitative systems pharmacology modelling to machine learning and artificial intelligence for drug development: its and .

Front Syst Biol. 2024-7-12

[4]
Leveraging large language models to compare perspectives on integrating QSP and AI/ML.

J Pharmacokinet Pharmacodyn. 2025-5-5

[5]
Challenges of reproducible AI in biomedical data science.

BMC Med Genomics. 2025-1-10

[6]
Comparing Large Language Models and Human Programmers for Generating Programming Code.

Adv Sci (Weinh). 2025-2

[7]
Augmented intelligence in precision medicine: Transforming clinical decision-making with AI/ML and/or quantitative systems pharmacology models.

Clin Transl Sci. 2024-12

[8]
CMINNs: Compartment model informed neural networks - Unlocking drug dynamics.

Comput Biol Med. 2025-1

[9]
Landscape of regulatory quantitative systems pharmacology submissions to the U.S. Food and Drug Administration: An update report.

CPT Pharmacometrics Syst Pharmacol. 2024-12

[10]
A framework for human evaluation of large language models in healthcare derived from literature review.

NPJ Digit Med. 2024-9-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索