Androulakis Ioannis P, Cucurull-Sanchez Lourdes, Kondic Anna, Mehta Krina, Pichardo Cesar, Pryor Meghan, Renardy Marissa
Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
Quantitative Systems Special Interest Group (QSP SIG), International Society of Pharmacometrics (ISoP), Bridgewater, USA.
J Pharmacokinet Pharmacodyn. 2025 Jun 16;52(4):36. doi: 10.1007/s10928-025-09984-5.
Quantitative Systems Pharmacology (QSP) has emerged as a cornerstone of modern drug development, providing a robust framework to integrate data from preclinical and clinical studies, enhance decision-making, and optimize therapeutic strategies. By modeling biological systems and drug interactions, QSP enables predictions of outcomes, optimization of dosing regimens, and personalized medicine applications. Recent advancements in artificial intelligence (AI) and machine learning (ML) hold the potential to significantly transform QSP by enabling enhanced data extraction, fostering the development of hybrid mechanistic ML models, and supporting the introduction of surrogate models and digital twins. This manuscript explores the transformative role of AI and ML in reshaping QSP modeling workflows. AI/ML tools now enable automated literature mining, the generation of dynamic models from data, and the creation of hybrid frameworks that blend mechanistic insights with data-driven approaches. Large Language Models (LLMs) further revolutionize the field by transitioning AI/ML from merely a tool to becoming an active partner in QSP modeling. By facilitating interdisciplinary collaboration, lowering barriers to entry, and democratizing QSP workflows, LLMs empower researchers without deep coding expertise to engage in complex modeling tasks. Additionally, the integration of Artificial General Intelligence (AGI) holds the potential to autonomously propose, refine, and validate models, further accelerating innovation across multiscale biological processes. Key challenges remain in integrating AI/ML into QSP workflows, particularly in ensuring rigorous validation pipelines, addressing ethical considerations, and establishing robust regulatory frameworks to address the reliability and reproducibility of AI-assisted models. Moreover, the complexity of multiscale biological integration, effective data management, and fostering interdisciplinary collaboration present ongoing hurdles. Despite these challenges, the potential of AI/ML to enhance hybrid model development, improve model interpretability, and democratize QSP modeling offers an exciting opportunity to revolutionize drug development and therapeutic innovation. This work highlights a pathway toward a transformative era for QSP, leveraging advancements in AI and ML to address these challenges and drive innovation in the field.
定量系统药理学(QSP)已成为现代药物开发的基石,为整合临床前和临床研究数据、加强决策制定以及优化治疗策略提供了一个强大的框架。通过对生物系统和药物相互作用进行建模,QSP能够预测结果、优化给药方案并应用于个性化医疗。人工智能(AI)和机器学习(ML)的最新进展有可能通过实现增强的数据提取、促进混合机制ML模型的开发以及支持引入替代模型和数字孪生,从而显著改变QSP。本文探讨了AI和ML在重塑QSP建模工作流程中的变革性作用。AI/ML工具现在能够实现自动化文献挖掘、从数据生成动态模型以及创建将机制性见解与数据驱动方法相结合的混合框架。大语言模型(LLMs)通过将AI/ML从仅仅是一种工具转变为QSP建模中的积极合作伙伴,进一步彻底改变了该领域。通过促进跨学科合作、降低进入门槛以及使QSP工作流程民主化,LLMs使没有深厚编码专业知识的研究人员能够参与复杂的建模任务。此外,通用人工智能(AGI)的整合有可能自主提出、完善和验证模型,进一步加速跨多尺度生物过程的创新。将AI/ML整合到QSP工作流程中仍然存在关键挑战,特别是在确保严格的验证流程、解决伦理问题以及建立强大的监管框架以解决AI辅助模型的可靠性和可重复性方面。此外,多尺度生物整合的复杂性、有效的数据管理以及促进跨学科合作仍然存在持续的障碍。尽管存在这些挑战,AI/ML在增强混合模型开发、提高模型可解释性以及使QSP建模民主化方面的潜力,为彻底改变药物开发和治疗创新提供了一个令人兴奋的机会。这项工作突出了一条通往QSP变革时代的途径,利用AI和ML的进展来应对这些挑战并推动该领域的创新。
J Pharmacokinet Pharmacodyn. 2025-6-16
J Pharmacokinet Pharmacodyn. 2025-5-5
Semin Hematol. 2025-6-16
Drug Discov Today. 2025-8-6
Health Inf Sci Syst. 2024-11-24
Curr Drug Discov Technol. 2025-2-10
J Pharmacokinet Pharmacodyn. 2025-5-5
BMC Med Genomics. 2025-1-10
Adv Sci (Weinh). 2025-2
Comput Biol Med. 2025-1
CPT Pharmacometrics Syst Pharmacol. 2024-12