Suppr超能文献

对膜结合黄素细胞色素MsrQ黄素单核苷酸(FMN)结合位点的研究揭示了一种意想不到的泛醌辅因子。

Studies of the membrane-bound flavocytochrome MsrQ flavin mononucleotide (FMN)-binding site reveal an unexpected ubiquinone cofactor.

作者信息

Carpentier Philippe, Pierrel Fabien, Duraffourg Nicolas, Guigliarelli Bruno, Hajj Chehade Mahmoud, Flandrin Laura, Basset Christian, Caux Christelle, Torelli Stéphane, Nivière Vincent

机构信息

CNRS, CEA, IRIG-LCBM, Laboratoire de Chimie et Biologie des Métaux, UMR 5249, Université Grenoble Alpes, Grenoble, France.

CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, Grenoble, France.

出版信息

FEBS J. 2025 Jun 26. doi: 10.1111/febs.70162.

Abstract

The methionine sulfoxide reductase PQ system (MsrPQ) is a newly identified type of bacterial methionine sulfoxide reductase (Msr) involved in the repair of periplasmic methionine residues that have been oxidized by hypochlorous acid. MsrP, which carries out the Msr activity, is a molybdoenzyme located in the periplasm, whereas MsrQ, an integral membrane-bound flavohemoprotein, specifically transfers electrons to MsrP to drive catalysis. MsrQ belongs to an important superfamily of heme-containing membrane-bound proteins, which includes the eukaryotic NADPH oxidases (NOX) and six-transmembrane epithelial antigen of the prostate (STEAP) ferric reductases. Like STEAP, and in addition to a b-type heme, MsrQ contains a flavin cofactor [flavin mononucleotide (FMN)], which mediates electron transfer from a cytosolic NADH oxidoreductase to the heme, and subsequently to MsrP. In this study, we characterized the FMN-binding site of MsrQ using an AlphaFold model, identifying R77 and R78 residues as potentially critical for FMN stabilization. The R77A and R78A mutations result in the complete loss of the FMN cofactor, showing that both residues are essential for FMN binding. Surprisingly, electron paramagnetic resonance (EPR) spectroscopy and biochemical analysis of the mutants revealed the presence of a ubiquinone (UQ) cofactor associated with MsrQ, independently of the binding of FMN. The mid-point redox potentials of the MsrQ heme and FMN cofactors, measured through redox titration and cyclic voltammetry experiments, contradict the previous assumption that UQ serves as the electron donor for MsrQ. Instead, our data suggest that UQ may function as an electron acceptor for the reduced form of MsrQ. We propose that UQ bound to MsrQ could act as a protective mechanism when MsrP substrate is limiting.

摘要

甲硫氨酸亚砜还原酶PQ系统(MsrPQ)是一种新发现的细菌甲硫氨酸亚砜还原酶(Msr),参与修复被次氯酸氧化的周质甲硫氨酸残基。执行Msr活性的MsrP是一种位于周质的钼酶,而MsrQ是一种整合膜结合黄素血红蛋白,专门将电子转移到MsrP以驱动催化作用。MsrQ属于含血红素膜结合蛋白的一个重要超家族,其中包括真核生物的NADPH氧化酶(NOX)和前列腺六跨膜上皮抗原(STEAP)铁还原酶。与STEAP一样,除了b型血红素外,MsrQ还含有一个黄素辅因子[黄素单核苷酸(FMN)],它介导电子从胞质NADH氧化还原酶转移到血红素,随后再转移到MsrP。在本研究中,我们使用AlphaFold模型对MsrQ的FMN结合位点进行了表征,确定R77和R78残基对FMN的稳定可能至关重要。R77A和R78A突变导致FMN辅因子完全丧失,表明这两个残基对于FMN结合都是必不可少的。令人惊讶的是,对这些突变体的电子顺磁共振(EPR)光谱和生化分析表明,存在一种与MsrQ相关的泛醌(UQ)辅因子,其与FMN的结合无关。通过氧化还原滴定和循环伏安实验测量的MsrQ血红素和FMN辅因子的中点氧化还原电位,与之前认为UQ是MsrQ电子供体的假设相矛盾。相反,我们的数据表明UQ可能作为还原型MsrQ的电子受体发挥作用。我们提出,当MsrP底物有限时,与MsrQ结合的UQ可以作为一种保护机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验