Meganathan Saveetha, Katiyar Arpit, Srivastava Esha, Mishra Rakesh Kumar
Tata Institute for Genetics and Society, Bengaluru, 560065, India, 91 9441902188.
Online J Public Health Inform. 2025 Jun 25;17:e65039. doi: 10.2196/65039.
One Health is a collaborative approach that can be used to evaluate and enhance the fields of human, animal, and environmental health and to emphasize their sectoral interconnectedness. Empirical evaluation of the One Health performance of a country in the form of an index, provides direction for actionable interventions such as targeted funding, prioritized resource allocation, rigorous data management, and evidence-based policy decisions. These efforts, along with public engagement and awareness on disease management; environmental degradation, and preparedness toward disease outbreaks, contribute to strengthening global health security. Thus, developing a One Health Index (OHI) calculator for India is a significant step toward evidence-based One Health governance in the context of low-and middle-income countries.
This study aimed to (1) develop a OHI Calculator for India using efficient and user-friendly weighting methods and demonstrate the calculation of the OHI; (2) develop India-specific datasets through secondary data collection from reliable data sources; and (3) determine data gaps for policy stewardship.
We proposed a OHI calculator to measure the OHI from an Indian context by adopting the Global One Health Index framework that comprises 3 categories: 13 key indicators, 57 indicators, and 216 subindicators. Secondary data collection was conducted to create a dataset for specific to India from reliable sources. For measuring OHI, we demonstrated two mathematical weighting methods: an efficient expert-based rating using fuzzy extent analysis and a modified entropy-based weightage method.
We demonstrate the step-by-step OHI calculation by determining indicator scores using both fuzzy extent analysis and modified entropy-based weightage method. Through secondary data collection an India-specific dataset was created using reliable sources. For the datasets from India, data for 156/216 subindicators were available, while that for the remaining 60 indicators were unavailable. Further, a pilot correlation analysis was performed between 20 indicator scores and relevant budget allocations for the years 2022-2023, 2023-2024, and 2024-2025. It was found that increases in the budget allocation across consecutive years improved indicator scores or better performance and vice versa.
The demonstrated OHI calculator has the potential to serve as a governance tool while promoting data transparency and ethical data management. There is a need for a collaborative data federation approach to resolve data gaps, including incomplete, missing, or unavailable data. Further, the correlation analysis between budgetary allocation and performance of indicators provides empirical evidence for policymakers to improve intersectoral communication, multistakeholder engagement, concerted interventions, and informed policy decisions for resource allocation.
“同一健康”是一种协作方法,可用于评估和加强人类、动物和环境卫生领域,并强调这些领域之间的部门相互联系。以指数形式对一个国家的“同一健康”绩效进行实证评估,可为有针对性的资金投入、优先资源分配、严格的数据管理和基于证据的政策决策等可采取行动的干预措施提供指导。这些努力,连同公众对疾病管理、环境退化和疾病爆发防范的参与和认识,有助于加强全球卫生安全。因此,为印度开发一个“同一健康指数”(OHI)计算器是在低收入和中等收入国家背景下迈向基于证据的“同一健康”治理的重要一步。
本研究旨在(1)使用高效且用户友好的加权方法为印度开发一个OHI计算器,并演示OHI的计算;(2)通过从可靠数据源收集二手数据来开发印度特定的数据集;(3)确定政策管理中的数据差距。
我们提出了一个OHI计算器,通过采用全球“同一健康指数”框架来衡量印度背景下的OHI,该框架包括3个类别:13个关键指标、57个指标和216个子指标。进行了二手数据收集,以从可靠来源创建一个印度特定的数据集。为了衡量OHI,我们演示了两种数学加权方法:使用模糊层次分析法的基于专家的高效评分法和改进的基于熵的加权法。
我们通过使用模糊层次分析法和改进的基于熵的加权法确定指标得分,演示了OHI的逐步计算过程。通过二手数据收集,使用可靠来源创建了一个印度特定的数据集。对于来自印度的数据集,有156/216个子指标的数据可用,而其余60个指标的数据不可用。此外,对2022 - 2023年、2023 - 2024年和2024 - 2025年的20个指标得分与相关预算分配进行了初步相关性分析。结果发现,连续几年预算分配的增加提高了指标得分或表现,反之亦然。
所演示的OHI计算器有潜力作为一种治理工具,同时促进数据透明度和符合道德的数据管理。需要一种协作式数据联合方法来解决数据差距,包括不完整、缺失或不可用的数据。此外,预算分配与指标表现之间的相关性分析为政策制定者改善部门间沟通、多利益相关方参与、协同干预以及资源分配的明智政策决策提供了实证依据。